

NYU

Multi-Wavelength Modelling of the Pulsar Wind Nebula in Kes 75

^{1,2}Moaz Abdelmaguid, ^{1,2}Joseph D Gelfand, ²Honey Htun, ²Jason Alford & ²Samayra Straal

¹New York University, 726 Broadway, New York, NY, 10003, USA ²New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates

جامعـة نيويورك أبوظبي NYU ABU DHABI

Why is Kes 75 important?

Search for the WR Candidate

- Of the existing Optical and NIR surveys of the Kes 75 field, only the United Kingdom Infrared Deep Sky Survey (UKIDSS) could detect this source.
- WR stars are divided into 3 classes; WN stars (nitrogen dominant, some carbon), WC stars (carbon dominant, no nitrogen) and rare WO stars with C/0 < 1

Figure: Chandra X-ray image of Kes 75. Credit: NASA/CXC/GSFC/F.P.Gavriil et al.

- Powered by an X-ray rotation-powered-pulsar (RPPs) with magnetar like behavior
- High E = 3.14×10^{36} ergs/s \longrightarrow Energetic System
- Low $T_{ch} \sim 720$ years \longrightarrow Young System
- High magnetic field ($B_{sd} \sim 5 * 10^{13} G$) \longrightarrow Connected to magnetar activity?
 - Showed a magnetar like outburst in 2006 that was accompanied by:
 - X-ray flux increase
 - Change in braking index from **p** = 2.65 to **p** = 2.16
 - Went into another outburst in 2020 (p = 2.7 before outburst)

Model Description & Fitted Properties

Figure: Location of potential UKIDSS sources within 1' from the center of kes 75 with WR candidates highlighted. GAIA & IPHAS detections are marked with crosses

Outline of the Search & Elimination Process

- 1. Use NIR colors to distinguish between WR candidates and background stars
 - Identify WR stars based on the criteria outlined by Faherty et al., 2014 using their NIR colors
 - Select UKIDSS sources located within 1' of Kes 75 that satisfy the NIR color cut and have the expected k magnitude inferred from the hot photon field

2. Eliminate Sources in less sensitive surveys

 Given the high N_H towards Kes 75, a WR star in the region should be undetected in other surveys such as Gaia G and IPHAS r

3. Projected Distance and Magnitude Correction

- The source positions in the above figure are projected locations & the sources could actually be further away from the center of Kes 75
- We calculated the expected magnitude of the sources if they were offset from
- We use a one-zone evolutionary model of a PWN inside an SNR based on *Gelfand et al. 2009*.
- The model uses MCMC algorithm to reproduce the properties of the source:
 - Dynamical Properties: SNR size, PWN size and distance to the PWN
 - Spectral Properties: Radio, X-ray & Gamma-rays (Fermi-LAT & HESS) flux densities

Key Results from the Modelling

- the center of the PWN, resulting in a few final candidates possessing the correct magnitude to contribute to the photon field
- 4. Distinguishing between WR Stars and Red Giants
 - UKIDSS survey is sensitive enough to detect red giants with similar colors as WR stars
 - We used the color diagrams by Lucas et al., 2008 to eliminate red giants from our potential UKIDSS sources

Figure: The expected magnitude of the illuminating sources. The shaded region represents the possible WR candidates that have the correct K magnitude to illuminate the PWN. The gradient of the shaded lines are possible actual separation ranges

- False Probability Test
 - Using the same criteria above, we searched for a WR candidate at 100 random locations within 1 degree from kes 75

1. Braking Index (Left Panel):

- The model strongly favors the current value of the braking index (p = 1.8 2.1)
- This suggests that the pre-2006 outburst was just a transient state

2. Secondary Hot & Intense Photon Field (Right Panel):

- On top of the CMB and cold background photon field, we require an additional very hot & intense photon field to fit the gamma-rays with the following properties:
 - Temperature: 1.4×10^5 K
 - Energy Density: 7.3×10^{-9} ergs/cm³
- Assuming the source responsible for this field is present at the center of the PWN, the stellar properties of the field translates to that of a **Wolf-Rayet** star with:
 - Luminosity: $2.6\times 10^5~L_{\odot}$
 - Radius: 0.82 R_{\odot}
 - Extincted apparent K magnitude: 14.5
- As the source moves further away from the central region, the magnitude of the source should decrease, implying a more luminous source

• Results: 90% of the time, the search returns fewer candidates than the number obtained from the kes 75 region

Results & Final Remarks

- 1. The time average braking index is closer to its value between the outburst
- 2. Kes 75 is likely illuminated by a WR star suggesting it has a massive progenitor
- 3. Further MCMC explorations are underway to constrain more properties (e.g, pulsar wind, supernova explosion properties & ISM density)

- Gelfand, J. D., Slane, P. O., & Zhang, W. 2009, ApJ, 703, 2051
- Straal, S. M., Gelfand, J. D., & Eagle, J. L. 2023, ApJ, 942, 103
- Faherty, J. K., Shara, M. M., Zurek, D., Kanarek, G., & Moffat, A. F. J. (2014), ApJ, 147 (5), 115
- Lucas, P. W., M.G., H., & A., L. (2008), MNRAS, 391 (1), 136 –163