Atoms ranging from H to Ni are considered with solar abundance

- The *nei* model shows faster ionization than our model due to the assumption of the constant $kT_{\rm e}$.
- The Fe+16 fraction ratio of our model to the nei model are 1.6 at $\tau = 10^{11}$ cm⁻³ s \rightarrow Therefore, there are systematic biases in estimation of τ using the *nei* model.

References Tab. 1: Best-fit values. $\beta = m_e/m_p$ (fixed)

Fig. 1: Schematic view of shock heating and subsequent non-equilibrium processes. **Method**

For a given set of shock speed (V_{sh}) and initial electron-ion temperature ratio ($\beta \equiv kT_e/kT_{\text{ion}}$), we numerically integrate ...

(2) Ionization (generally used form, e.g., [3]) kT_i : temperature, m_i : mass, Z_i : mean charge number, n_e : electron number density

 $\mathrm{d} f_{X,x}$ $d(n_e t)$ $= S_{X,x-1}(T_e) f_{X,x-1} - \{S_{X,x}(T_e) + \alpha_{X,x}(T_e)\} f_{X,x} + S_{X,x+1}(T_e) f_{X,x+1}$

 $f_{X,x}$: ion fraction, $S_{X,x}(\alpha_{X,x})$: ionization (or recombination) coefficients

Our model provides takes $V_{\rm sh}, \beta$ and τ as inputs and outputs the synthesized spectrum. Therefore, our model can directly estimate these parameters from X-ray spectral fitting. As a demonstration, we applied our model to

• The obtained shock speed of \sim 800 km/s is consistent with the previous optical study (Morse+1996).

Introduction

10−6 10−5 10−4 10−3 0.01 0.1 - Our model with shock r1 2 5 10 −4 −2 0 2 4 Energy (keV) normalized counts s−1 keV−1 (data−model)/error $\ddot{}$ Fig. 7: X-ray spectra of the region. Fig. 6: An X-ray image of N132D. - sky background - detector background speed of \sim 800 km/s

Supernova Remnant III June 9th–16th, 2024 @ Crete, Greece

Email: **ohshiro-yuken@g.ecc.u-tokyo.ac.jp**

Yuken Ohshiro (Univ. Tokyo, ISAS/JAXA), Hiroya Yamaguchi (ISAS/JAXA, Univ. Tokyo) Hiromasa Suzuki (ISAS/JAXA), Shunsuke Suzuki (Aoyama Gakuin Univ. ISAS/JAXA), and Yoshizumi Okada (Aoyama Gakuin Univ. ISAS/JAXA)

Systematic bias in parameter estimation using the *nei* **model Our model with** V_{sh} **= 1000 km s-1,** β **= 0.01,** τ **= 10¹¹ cm⁻³ s**

Summary

We present a self-consistent model of thermal X-ray emission from shock-heated plasmas that accounts for non-equilibrium conditions of both temperature and ionization. Given a shock speed and initial electron-to-ion temperature ratio, the model calculates the temperature and ionization state of each element by simultaneously solving the relaxation processes. The thermal X-ray spectrum is synthesized by coupling our model with the AtomDB spectral code and compared with the *nei* model, a constant-temperature non-equilibrium ionization model commonly used in X-ray astronomy. The differences in emission line intensities between the models are significant enough to be distinguished even with a CCD detector. We find that the estimated ionization degree by *nei* model is systematically 30-40% lower than that predicted by our model. Implemented in the standard X-ray analysis software XSPEC, our model allows the physical parameters of shock-heated plasmas to be constrained directly from observations. Applying our model to the archival Chandra data of the supernova remnant N132D, we obtained a shock speed of 800 km s⁻¹, consistent with previous optical studies.

A self-consistent model of shock-heated plasma in non-equilibrium states for direct parameter constraints from X-ray observations S5.12

Non-equilibrium of ionization and temperature are often observed in Shock-heated plasmas in supernova remnants (SNRs) [e.g., 1, 2]. Considering these non-equilibrium states is crucial for estimating parameters such as shock speed and ionization degree from X-ray observations (Fig. 1).

> The O VIII Lyα emissivity of our model can be explained by the *nei* model with $kT_e =$ 0.91 keV, $\tau = 7.2 \times 10^{10}$ cm⁻³ s (Fig. 5).

However, conventional spectral models (e.g., *nei*, *pshock*) make the simplifying assumption of a constant electron temperature.

(1) Thermalization (see [2] for full expression)

 $d(kT_i)$ $d(n_e t)$ $=$ \sum *j* $kT_j - kT_i$ *t*eq, *ij* , $t_{\text{eq, }ij}$ ∝ $Z_i^{-2}Z_j^{-2}$ *^j* (*kTi* m_i + *kTj mj*)

To calculate ion fractions with the nei model, two parameters (i.e, *kT*^e and τ) are required. So we used the kT_e at each τ value obtained from our calculation (e.g., $kT_e = 0.91$ keV at $\tau = 10^{11}$ cm⁻³ s).

We adopt $\tau \equiv \int_{0}^{R_{e}} dt$ as the integration variable. **Calculation of solar abundance plasma** *t* 0 **Results**

> Chandra observations of N132D. We analyzed three outer rim regions (Fig. 6 and 7).

Elapsed Time (yr) ne = 1 cm-3 is assumed Initial conditions & assumptions $\frac{10^2}{10^4}$ 10⁴ $V_{\rm sh}$ = 1000 km/s, β = 0.01 $10⁻$ 3 $m_i V_{\rm sh}^2 \sim {\rm few\, keV}$ Oxvgen kT_i ($\tau = 0$) ∼ 16 Hydrogei Singly ionized for all atoms nei model $f_{X,1}(\tau = 0) = 1.0$ 10^{-} $f_{X,x}(\tau = 0) = 0 \; (x \neq 1)$ our model

10−6 [2] Vink, J. 2020, Physics and Evolution of Supernova Remnants, [3] Spitzer, L. 1956, Physics of Fully [1] Yamaguchi, H., & Ohshiro, Y. 2022, in Handbook of X-ray and Gamma-ray Astrophysics, 1–17, 4 Ionized Gases, [4] Hamilton et al. 1983, ApJS, 51, 115, [5] Morse et al. 1996, ApJ, 112, 509 $\frac{1}{2}$ (data−model)/error

Fig. 2: The temporal evolution of temperatures and Fe ion fractions, and ion fractions ratios of our model and the *nei* model.

Synthesized X-ray spectra

Fig. 3: Synthesized X-ray spectra using our model (blue) and the *nei* model (orange). The left shows the theoretical spectra, while the middle and right show the spectra convolved with instrumental responses of XRISM and XMM-Newton, respectively.

Applications to X-ray Observations (bottom) Comparison with our model.

Using AtomDB spectral code, which is widely used in X-ray astronomy. The emission line intensities of each models are different (Fig. 3), reflecting differences in ion fractions as shown in Fig. 2

We calculate the O VIII Lyα emissivity as a function of τ using the *nei* model (Fig. 4), and search for the τ value at which both emissivities coincide by reducing the *τ* value of the *nei* model.

- However, other emissivities (e.g., Fe XVII 3C and Ne IX resonance) does not match.
- Similar discrepancies are found to occur with corrections using other line emissivities (i.e., Fe XVII 3C and Ne IX resonance).
- This discrepancy suggests that systematic errors of < 20% also exist in abundance estimation using the *nei* model.

$$
T = kT \cdot \frac{3/2}{}
$$

Fig. 8: Comparison between our model and the *nei* model.

100 102 104

Our model (V_{sh} = 1000 km s-1, β = 0.01, τ = 10¹¹ cm⁻³ s) *i* model $(kT = 0.91$ keV, $\tau = 10^{11}$ cm⁻³ s *nei* model (kT_e = 0.91 keV, τ = 10¹¹ cm⁻³ s) $\frac{m_e - m \cdot \pi}{s}$ Theoretical $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array}$ $\begin{array}{c} \end{array}$ M-cal. (XRISM) $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\begin{array}{c} \end{array}$ $\begin{array}{c} \end{array}$ CCD (XMM) O VIII Fe XVIII Fe XVII Fe XVII X
Ne I $\frac{\sqrt{11}}{\sqrt{11}}$ Fe XVIII W
O
O X
Ne Z Mg XI Si XIV Ω 5 2.0 0.5 2.0 0.5 Energy (keV) Energy (keV) Energy (keV)