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Nebular Phase Supernovae & 3D Spectral Synthesis

A few months after the explosion, the expanding supernova will be-
come (mostly) optically thin and its inner structure becomes visible,
entering the "nebular phase". The remnant is relatively hard to ob-
serve in this phase due to its relative faintness, and observations more
than a year after explosion are rare. In the nebular phase, the nebula
shines through the radioactive decay of isotopes such as 56Ni, which
are created in the explosion (Jerkstrand, 2017).
ExTraSS (EXplosive TRAnsient Spectral Simulator) is a 3D NLTE
spectral synthesis code (van Baal et al., 2023, 2024) which can use 3D
explosion models as inputs. Previous studies used spherically sym-
metric, 1D models to determine the structure of the nebula and the
spectrum created from such a model. However, such models can only
approximately account for the complex 3D morphology.
The work focuses on the line centroid shift and line width and how
these vary across viewing angles. We concentrate on the four optical
lines of Mg I] λ4571, [O I] λλ6300, 6364, [Ca II] λλ7291, 7323 and [C I]
λ8727, although we also look at the 1.08µ and 2.06µHe lines appear-
ances in the NIR.

Results − Line Widths and Centroid Shifts
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The line properties of HEC-60 for the four spectral features, for all of our viewing angles. The angles
Ψ are color coded by the angle between the direction vector to the viewer and the neutron star
motion vector; the black points (small Ψ) correspond to viewing angles where the neutron star is
moving almost directly towards the observer.
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The contours of the line centroid shifts and line widths for all 6.0M⊙ models, compared to the obser-
vational SNe in black. The error bars indicate variation between different observations from the same
SN. The solid contours show the line properties calculated from just that element, while the dashed
contours are calculated using all emission.

The Models − 9 He-core explosions

Nine different explosion simulations are investigated, with three differ-
ent progenitor stars exploded with three different explosion energies.
The progenitor stars are Ertl et al. (2020)’s 3.3, 6.0 and 11.0M⊙ He-
core stars, each exploded with ∼ 0.5, 1 and 3B. The explosions were
carried out with the Prometheus-HotB code.

The 3D renderings of all explosion models, showing iso-surfaces of C (green), oxygen (red) and
Ni+X (blue), at the end of the 3D SN simulations with P-HotB. Each row has similar explosion
energies (from top to bottom, 3, 1 and 0.5 B), while each column has the same progenitor star (from
left to right, 3.3, 6.0 and 11 M⊙ He-cores). Each panel is orientated such that the neutron star
motion is vertically upwards; the neutron star kick velocities are noted in the top-right of each panel.

Results − He Lines in NIR
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The NIR spectra (9200 − 22500Å) for each of our models at 200 days post-explosion. Note that
every row has its own y-axis scale. The relevant He lines are the He I 1.08µ and 2.06µ lines; only
in some models are these uncontaminated and clearly visible.
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