

Measure of the initial mass of ⁴⁴Ti in SN 1987A through the ⁴⁴Sc emission line

R. Giuffrida, M. Miceli, E. Greco, S. Orlando, M. Ono, V. Sapienza, F. Bocchino, O. Petruk, B. Olmi, S. Nagataki

1. INTRODUCTION

Supernova explosions are important sources to study the chemical evolution of the Universe. The supernova ejecta carry information on the explosive nucleosynthesis processes, and elements synthesized in the inner layers of core-collapse supernovae can "keep memory" of the physical mechanisms governing the explosion. Important issues can be addressed by studying the radioactive emission of the ⁵⁶Ni and ⁴⁴Ti isotopes, which are synthesized in the central part of the exploding star. In particular the ⁴⁴Ti can be studied through its products decays, such as ⁴⁴Sc and its emission line at 4.09 keV. We here detect a significant level of ⁴⁴Sc emission line in the central part of SN 1987A through multi-epoch *Chandra* data analysis.

Previous works based on the ⁴⁴Ti emission lines (67.87 keV and 78.32 keV) in SN1987A found **different values**

• Boggs et al 2015 - *NuSTAR* results: $M_{44} = (1.5 \pm 0.3) \times 10^{-4} M_{\odot}$ • Grebenev et al. 2012 - *INTEGRAL* results: $M_{44} = (3.1 \pm 1.8) \times 10^{-4} M_{\odot}$

NuSTAR (Boggs et al. 2015)

Anisotropy in the inner ejecta: redshift of ~ 0.23 keV in the ⁴⁴Ti Xray emission lines at 67.87 keV corresponding to 700 km/s (in the rest frame of SN 1987A).

Eq. 1: $F_i = 4\pi d^2 44 m_n t_{44}$

 $\label{eq:Fi} \begin{array}{l} \textbf{F}_i = flux \ of \ the \ radioactive \ emission \ line \\ \textbf{M}_{44} = initial \ mass \ of \ ^{44}\text{Ti} \\ \textbf{W}_i = emission \ eff. \ (17.4\% \ for \ the \ line \ at \ 4.09 \ keV) \\ \textbf{t}_{44} = 85 \ yr \\ \textbf{d} = 51.4 \ ppc \end{array}$

2. DATA ANALYSIS

Multi-epoch (from 2000 to 2021) spectral analysis on a circular region located at the center of the remnant with radius 0.3" (red circle in Figure) to minimize the contamination from the X-ray emission stemming from the shocked plasma.

Model = *Tbabs*(*vphabs***pow* + *vnei* +

gauss)

Combined spectra

Energy (keV)

3. RESULTS AND CONCLUSIONS

Table 1. ⁴⁴Sc line flux for each data set. Error bars are at 68% significance level.

	Group	⁴⁴ Sc flux (s ⁻¹ cm ⁻²)	Significance	
Lowest contamination from	1 (2000-2004)	$(2.4 \pm 1.2) \times 10^{-7}$	95.5%	
the thermal X-ray emission	2 (2005-2009)	$< 2.7 \times 10^{-7}$	< 68%	
	3 (2010-2015)	$< 3.5 \times 10^{-7}$	< 68%	
Lowest absorption	3 (2016-2021)	$(6 \pm 3) \times 10^{-7}$	95.5%	
from the cold ejecta				

2.1 2.7 3.4 4 4.6 5.3 5.9 6.5 7.1

keV⁻¹ 5x10⁻⁴

2×10⁻

10-4

Tbabs = 2.35 x 10²¹ cm⁻² (Park et al. 2006)
Pow - (Greco et al. 2022)
Vphabs and vnei - Greco et al. 2022, Zhekov et al. 2009
Gauss: centered according with the redshift of ⁴⁴Ti

To improve the statistics we simultaneously fitted spectra from multiple observations.

- 2000-2004
- 2005-2009
- 2010-2015
- 2016-2021

Absorption effects

Cold ejecta partially absorb the ⁴⁴Sc emission line, especially for moving away regions, as for the ⁴⁴Ti (Boggs et al. 2015).

4. FUTURE PERSPECTIVES

Sum 2016-2021 (for

visualization purpose)

Detection of the ⁴⁴Sc with 500 ks **XRISM**.

SN1987A will not be spatially resolved but the high spectral resolution will help in making the line visible. Spectra synthesized from Sapienza et al. (2024) adding the ⁴⁴Sc gaussian line.

	0	10	20	30	40	50			
	Years after the explosion								
MHD simulation by Orlando et al. 2020 and Ono et al. 2020 were used to model the absorption from cold ejecta between bulk ⁴⁴ Ti and the observer. We consider the absorption to originate in the computational cells where the Ti abundance is < 20% of its maximum. <u>Model-dependent</u> <u>approach.</u>									
	Red curv Results i	/e in Figure: f n remarkable	it with the ex agreement v	ponential tre with <i>NuSTAF</i>	end (see Eq. ? robservatio	1) ons.			
	2016 - 2	2021: emissic	on less conta	minated by t	he absorptic	on.			

 $M_{44} = (1.54 \pm 0.7) \times 10^{-4} M_{\odot}$