[W60] B90: a mass-losing luminous RSG in the LMC interacting with the CSM

G. Munoz-Sanchez^{1,2}, S. de Wit^{1,2}, A. Z. Bonanos¹, K. Antoniadis^{1,2}, K. Boutsia^{3,4}, P. Boumis¹, E. Christodoulou^{1,2}, M. Kalitsounaki^{1,2}, A. Udalski⁵

¹ IAASARS, National Observatory of Athens, Athens, Greece, ² Department of Physics, National and Kapodistrian University of Athens, Greece, ³ Mid-Scale Observatories/NSF NOIRLab, Tucson, AZ, USA, ⁴ Las Campanas Observatory, Carnegie Observatories, La Serena, Chile, ⁵ Astronomical Observatory, University of Warsaw, Warsaw, Poland

Motivation

[W60] B90 is one of the largest, $R \approx 1200 R_{sun}$, most luminous, $\log(L/L_{sun})=5.32 \pm 0.01$, and mass-losing, $\log(\dot{M})=-5.35$, red supergiants (RSG) in the Large Magellanic Cloud (LMC) [1][2].

Its location in the Hertzsprung-Russell diagram **close to the observational RSG luminosity limit**, $log(L/L_{sun})=5.50$ [3], places it within the "**RSG problem**". [W60] B90 presents a unique opportunity to understand better supernova progenitors and episodic mass-loss in low metallicity environments.

Our discovery of a bar-like nebular structure at 1 pc, reminiscent of the bar around Betelgeuse, raised the **question** of whether [W60] B90 is the **4**th **RSG with a bow shock** and **1**st **extragalactic** case (*Fig.* **1**).

Figure 1: Comparison of the bar in [W60] B90 with the Betelgeuse case

Evidence of shocked material

To prove the interaction between [W60] B90 and the bar, we compiled *Gaia* DR3's proper motion of the stars inside a cone centered on our RSG, cleaned the foreground contamination [4], computed a LMC local proper motion, and subtracted this value to [W60] B90's proper motion to obtain its peculiar velocity. We conclude that **[W60] B90 is moving towards the bar** independently of the parameters used and consistently with 1σ error from *Gaia* (*Fig. 2a*).

The intensity ratio of [S II]/H α is historically used to detect shocked material when it surpasses the critical value of 0.4. We investigated the circumstellar material around our RSG obtaining long-slit spectroscopy with MagE, 6.5-m Baade telescope (Las Campanas, Chile).

Finally, we report **ratios higher than [S II]/H** α > **0.4 between the bar and the star** (*Fig. 2b*) and in **agreement with the proper motion,** suggesting that the **shocked material is result of the interaction** of the star with the ISM. However, further investigation is needed in order to resolve the bow shock.

[W60] B90 variability and dimming events

Archival photometry spanning the last 30 years revealed **three dimming events** with $\Delta V \sim 1$ mag, a rise time of ~ 400 days and a recurrence of ~ 11.8 years (*Fig. 3*). We attributed the delay in the recovery to the size of the atmosphere, as [W60] B90 is more extended than Betelgeuse [5,6] and the adjustment within the atmosphere needs additional time to manifest. We reinforce this argument by reporting similarities in the timescale between [W60] B90 with those of μ Cep [7] and the hypergiant RW Cep [8].

[W60] B90: 1210 R _{sun}	μ Cep: 1259 R _{sun}
Betelgeuse: 700-1000 R _{sun}	RW Cep: 900-1760 R _{sun}

Figure 3: Comparison of the three dimming events with Betelgeuse, μ Cep and RW Cep.

TiO bands from the optical							
	Spectral type	ATLAS o	$T_{\rm eff,TiO}$	E(B-V)	A_V	χ^2	
		(mag)	(K)	(mag)	(mag)		
Epoch1	M3 I	_	3550 ± 40	1.00 ± 0.15	3.41±0.51	13.0	
Epoch2	M4 I	12.6 ± 0.1	3460^{+20}_{-30}	1.10 ± 0.10	3.75 ± 0.34	193.7	
Epoch3	M3 I	12.3 ± 0.1	3550^{+40}_{-30}	$1.35^{+0.10}_{-0.05}$	$4.60^{+0.34}_{-0.17}$	47.9	
Epoch4	M3 I	11.8 ± 0.1	3610^{+60}_{-50}	$1.25^{+0.10}_{-0.05}$	$4.26^{+0.34}_{-0.17}$	26.9	

Figure 4: Optical multi-epoch *spectroscopy of [W60] B90. The last dimming event is shown in the subplot.*

Wavelength (Å)

Multi-epoch spectroscopy with MagE of [W60] B90 **during the last dimming** (Epochs2-4, *Fig.* 4) revealed **similar** conditions **as** in the **Great Dimming of Betelgeuse** [9]: evolution of the atmospheric properties, a correlation between T_{eff} -ATLAS *o*, and an enhancement of the *Av* after the minimum. We used the MARCS [10] models to derive the properties of [W60] B90 (*Table* 1).

www.linkedin.com/in/ gonzaloms

In

[1] de Wit S., Bonanos A.Z., Tramper F., Yang M., Maravelias G., Boutsia K., Britavskiy N., et al., 2023, A&A, 669, A86
[2] Antoniadis, K., Bonanos, A. Z., de Wit, S., et al. 2024, A&A, in press
[3] Mackey J., Mohamed S., Neilson H.R., Langer N., Meyer D.M.-A., 2012, ApJL, 751, L10
[4] Jimenez-Arranz O., Romero-Gomez M., Luri X., McMillan P.J., Antoja T., Chemin L., Roca-Fabrega S., et al., 2023, A&A, 669, A91
[5] Joyce, M., Leung, S.-C., Molnár, L., et al. 2020, ApJ, 902, 63
[6] Kravchenko, K., Jorissen, A., Van Eck, S., et al. 2021, A&A, 650, L17
[7] Josselin, E. & Plez, B. 2007, A&A, 469, 671
[8] Anugu, N., Baron, F., Gies, D. R., et al. 2023, AJ, 166, 78
[9] Dupree A.K., Strassmeier K.G., Calderwood T., Granzer T., Weber M., Kravchenko K., Matthews L.D., et al., 2022, ApJ, 936, 18
[10] Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951

This work was funded by the ERC under the EU's Horizon 2020 research and innovation program (Grant agreement No. 772086)

Take away points

• [W60] B90 is moving towards the bar

• [S II]/H α > 0.4 between the star and the bar, where the bow shock is expected

• Dimming with a 11.8 years recurrence

• Time scale of the dimming depends on the radius

• Spectroscopy on the last dimming revealed similar properties as in The Great Dimming of Betelgeuse

• [W60] B90 is undergoing episodic mass-loss