Formation of Mg-rich SNRs by shell merger and its effect on the explodability

Kai Matsunaga (Kyoto University) email: matsunaga.kai.i47@kyoto-u.jp

Hiroyuki Uchida (Kyoto Univ.), Rei Enokiya (Kyushu Sangyo Univ.), Toshiki Sato (Meiji Univ.) Ryo Sawada, Hideyuki Umeda (Tokyo Univ.), Takuto Narita, and Takeshi Go Tsuru (Kyoto Univ.)

More details are on **KM et al. 2024 (arXiv:2405.20736), accepted to ApJ** and **Sato, KM, et al. 2024 (arXiv:2403.04156)**

1. Scientific motivation: What kind of massive stars can explode?

- The "explodability" of a massive star is an open question. Some results conflict with each other.
- All of the progenitors of type-IIP SN events seem to be $\lesssim 20 M_{\bigodot}$. (e.g., Smartt 2015)
- The theoretical studies suggest that $\lesssim 20 M_{\bigodot}$ stars will explode. (e.g., Heger+2003, Sukhbold+2016)
- The chemical composition of our galaxy needs explosions of $\,gtrsim 20 M_{\bigodot}$ stars. (e.g., Suzuki & Maeda 2018)
- The Fe/Si abundance ratios in some SNRs indicate the progenitors of $\ \gtrsim 20 M_{\bigodot}$ stars. (Katsuda+2016)

Here, we focus on the abundance patterns of inter-mediate mass elements (Ne, Mg, Si) in SNRs, measured with X-ray. They are expected to give us information about the progenitors before exploding.

2. Mg-rich SNRs

Some X-ray observations report "Mg-rich" SNRs (N49B, Park+2003; G284.3-1.8, Williams+2015), whose Mg/Ne abundance ratiois significantly greater than the solar. **The progenitors and forming mechanisms still need to be clarified.**

Fig. 2: X-ray image and spectrum of SNR G359.0-0.9, Press, and Spe

Fig. 5: Spatial distribution of Ne and Si at various times in a 3D simulation (Yadav+2020). At the initial state (top), Ne and Si are spatially separated and mixed by the end of the simulation (bottom) (Yadav+2020).

3. Shell mergers can explain Mg-rich Fig. 4: Parameter distribution of Mg/Ne and Si/Mg expected from
stellar models (circles; Sukhbold et al. 2018) and obtained from

To reveal the origin of the Mg-rich ejecta, we compare the observed Mg/Ne ratios with the stellar models (Fig. 4). The comparison result suggests that the distribution of the Mg/Ne ratios is consistent with that of the models.

The Important points are below:

- Mg-rich ejecta can be explained by "shell mergers" (Fig. 5, 6).
- imass • There are two groups in Mg-rich models; 14 M _○ < $M_{\rm ZAMS}$ < 24 $M_{\rm \odot}$ progenitors with high Si/Mg ratios and $M_{\rm ZAMS}$ < $15M_{\odot}$ progenitors with low Si/Mg ratios (Fig. 5) The difference comes from the internal structures (Fig. 6).
- All massive progenitors with $M_{\rm ZAMS}$ > 20 M_{\odot} have Mg-rich compositions with high Si/Mg ratios (Fig. 4).

In particular, the last point suggests that only a Mg-rich SNR with a high Si/Mg ratio would be a candidate for a massive star's r emnant ($M_{\rm ZAMS} > 20 M_{\odot}$).

previous observations of SNRs (green squares). The colored and gray circles represent explosion and implosion cases (predicted with the method of Ertl+2016), respectively.

ê

4. Effects of Shell Mergers on Explodability

In Ertl+2016, they suggest that the explodability of a 1D progenitor can be predicted (in accuracy of $> 97%$) using two parameters;

•
$$
M_4 \equiv M_r(s = 4)/M_{\odot}
$$

\n• $\mu_4 \equiv \frac{\Delta M / M_{\odot}}{\Delta r / 1000 \text{ km}} \Big|_{s=4}$

, where *s* is the dimensionless entropy per n ucleon, and M_r is the mass-radius.

As shown in Fig. 7, we found that Mg-rich (shell merger) progenitors tend to be more explodable than normal progenitors. **Together with Fig.4, shell mergers may** lead a massive star ($M_{\rm ZAMS}$ $> 20 M_{\odot}$) to **explode.**

ratio]

Fig. 7: μ_4 versus $M_4\mu_4$ plot for all models (top) and relatively massive models (bottom). The white/grey areas indicate the explode/implode ranges in W18, respectively. The models are provided by Skukhbold+2018.

5. Effects on odd-Z elements (work with XRISM)

Ritter+2018a suggest that O-C shell mergers promote to synthesize the odd-Z elements. Together with our result, that may give us some guidelines to detect those elements

with XRISM satellite.

Fig. 8: Overproduction factor versus Z plot for some shell merger models (Ritter+2018a). OP=1 is the case of a model without a shell merger.

6. Summary and Conclusion

- A few Mg-rich SNRs ($(Mg/Ne)/(Mg/Ne)_O > 1$) have been found by X-ray spectroscopy.
- The abundance patterns can be explained by "shell mergers", which seem to affect the explodability and nucleosynthesis of massive stars.