Discovery of an extreme Red Supergiant in the LMC transitioning to a Blue Supergiant

M. Kalitsounaki^{1,2*}, G. Munoz-Sanchez^{1,2}, S. de Wit^{1,2}, A.Z. Bonanos¹, K. Antoniadis^{1,2}, K. Boutsia^{4,5}, E. Christodoulou^{1,2}, A. Udalski⁶, E. Zapartas³, G. Maravelias^{1,3}

¹National Observatory of Athens, Greece, ²National and Kapodistrian University of Athens, Greece, ³IA-FORTH, Greece, ⁴Cerro Tololo Inter-American Observatory/NSFs NOIRLab, Chile, ⁵Las Campanas Observatory, Carnegie Observatories, Chile, ⁶Warsaw University Observatory, Poland

Why WOH G64?

WOH G64 is a very cool (Teff = 3400 K)^[1], luminous (log $L/L\odot$ = 5.45)^[2] extreme RSG in the Large Magellanic Cloud. The star has the highest mass-loss rate (log $\dot{M}/M\odot$ yr⁻¹ = -2.6)^[3] recorded for a RSG in the LMC and is surrounded by dense circumstellar material. The star has an axisymmetric, optical thick dust torus, viewed close to pole on ($i = 20^{\circ}$) that contains 3-9 MO^[2]. We obtained new spectroscopy of this extreme RSG, which revealed a dramatic transformation in its spectral appearance and motivated this study.

Red supergiant for > 30 years

Transition to the blue in 2014 !

- M7.5 spectral type (*Elias et al. 1986*^[4])
- M5/M7 spectral type (DFOSC 1995, *van Loon et al. 2005*^[5])
- **M6** spectral type (UVES 2007, *our work*)
- M5 spectral type (IMACS 2008, Levesque et al. 2009^[1])

Spectroscopy from X-Shooter (2016) & MagE (2021):

- No TiO absorption
- Fe II and [Fe II] emission lines
- Double peaked Ca II and Balmer emission lines
- P Cygni profiles

Light Curve

Interpretation

Some possible scenarios for explaining this remarkable transition of WOH G64 from a red to a blue supergiant are:

This work is funded by the ERC under the EU's Horizon 2020 erc research and innovation program (Grant agreement No. 772086).

References:

[1] Levesque, E. M., et al. 2009, AJ, 137, 4744 [2] Antoniadis, K., et al. 2024, A&A, in press [3] Ohnaka, K., et al. 2008, A&A, 484, 371 [4] Elias, J., et al 1986, ApJ, 302, 679 [5] van Loon, et al 2005, A&A, 438, 273

- a) Loss of stellar atmosphere due to episodic mass loss
- b) Loss of atmosphere due to LBV-like mass loss near the Humphreys-Davidson limit
- Common envelope evolution due to C) unstable mass transfer onto a companion, which is obscured due to dust d) Thorne–Żytkow object (TŻO)
- These possible scenarios are still under investigation, however, studying RSGs as their atmospheres transition from H-rich to H-poor helps to understand Type II SNe progenitors and "the RSG problem".