

Typing supernova remnant G352.7–0.1 using XMM-Newton X-ray observations

Lingxiao Dang¹, Ping Zhou¹, Jacco Vink², Junjie Mao³, Lei Sun¹, Qianqian Zhang¹ and Vladimír Domček ¹Nanjing University, People's Republic of China; ²University of Amsterdam, The Netherlands; ³Tsinghua University, China

Background

G352.7-0.1 is a mixed-morphology supernova remnant with a center-filled X-ray morphology and a double shell-like radio morphology. Previous studies suggest a Type-Ia origin of the remnant due to the low-ionization state of the Fe Kshell line. We performed an XMM-Newton X-ray study of the remnant, aiming to understand the explosion mechanism and the origin of its mixed-morphology.

Interaction with the molecular

clouds and spatial distribution of

plasma parameters The difference in the density of the interstellar medium between the halo and inner regions causes the shock wave to expand at different speeds in different directions, resulting in a double shell structure.

Right Ascension(2000)

SNR G352.7-0.1 interacts with molecular clouds. Red: VLA 4.8 GHz radio continuum image (Giacani E. et al. 2009); Green: APEX ¹²CO molecular cloud image (Zhang et al. ApJ in press); Blue: XMM-Newton 0.8-7 keV X-ray image.

17:28:00 50 40 27:20

There is a significant difference in density between the halo and the bright X-ray regions of supernova remnant. The low-temperature, high-density regions confirm the interaction with a dense medium. X-ray image of G352.7–0.1 (Red: 0.8-1.5 keV; Green: 1.5-3.3 keV; Blue: 3.3-7 keV).

Plasma and evolution parameters

By fitting the spectrum, we obtained parameters such as **temperature** (kT=2.06 keV) and calculated the **average hydrogen density** of the SNR (0.16 cm⁻³), the **ionization age** (5.0 kyr), the **Sedov age** (2.9 kyr), and the **supernova explosion energy** $(1.37 \times 10^{50} \text{ erg}$; the explosion energy has a large systematic error).

Explosion mechanism and progenitor mass inferred by metals By comparing with supernova nucleosynthesis models, we suggest that believe that G352.7-0.1 originated from a **core-collapse supernova** with a progenitor mass of **13** M_{\odot} .

XMM-Newton MOS1, MOS2, and pn spectra in 0.8–7 keV (black, red, and blue, respectively).

Reference

Giacani E., Smith M. J. S., Dubner G., Loiseau N., Castelletti G., Paron S., 2009, A&A, 507, 8 Pannuti T. G., Kargaltsev O., Napier J. P., Brehm D., 2014, Yamaguchi H., et al., 2014, ApJ, 78 Sezer A., Gök F., 2014, ApJ, 7

Contact: lxdang@smail.nju.edu.cn