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Introduction
Core-collapse supernovae represent powerful terminal 
explosions of massive stars, where the interplay of all 
four fundamental forces of nature results in these 
extraordinary events. Due to this intricate interaction, 
these supernovae are often regarded as cosmic 
laboratories, providing valuable insights into 
fundamental physics and astrophysics. In this study, 
we examine the potential information that can be 
extracted from the gravitational wave (GW) signals 
emitted during these events. Specifically, we 
investigate the feasibility of utilizing machine learning 
(ML) techniques to determine the progenitor mass and 
the equation of state (EOS) of high-density matter in 
proto-neutron stars. Our focus is on the bounce phase 
of the GW signal, as it is a regime amenable to 
accurate modeling with relatively modest 
computational resources (Abdikamalov et al 2022).

Method
To obtain GW signals, simulations are conducted 
using the CoCoNuT code (Dimmelmeier et al., 2005). 
For each progenitor mass and EOS, approximately 100 
rotational configurations are generated, spanning from 
slow to rapid rotation (Abdikamalov et al 2014). The 
waveforms are analyzed utilizing a convolutional 
neural network (CNN) with the parameters specified by 
Edwards (2021).

Probing EOS of dense matter
Next we perform simulations for different EOSs. The 
following plot shows GW signal corresponding to four 
representative EOSs, from which we conclude that  
the EOS can have ~10% impact on the GW signal.  
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Measuring progenitor mass
We first explore if it is possible to extract progenitor 
mass from the bounce GW signal under ideal 
condition: consider only four progenitors with initial 
masses 12, 15, 27, 40     and ignore the detector 
noise. For the same inner core rotation, measured by 
the ratio of rotational kinetic energy to potential 
energy, the bounce GW signal of different models is 
similar to each other: 

Conclusion
ML techniques are a powerful tool for analyzing GW 
signals from supernovae. While ML method exhibit 
limited capability to extract mass from bounce GW 
signal, we find ~87% classification accuracy for a 
family of four EOS. Future analysis will expand the 
GW parameter space and incorporate detector noise. 

The loss function, shown below as a function of epoch, 
does not change much beyond epoch 20. We use 
epoch 20 in our final analysis.

In addition to CNN, we also explored other machine 
learning methods, such as random forest, CATBoost, 
and XGBoost. We found that all these methods 
produced qualitatively similar results.

The confusion matrix for the prediction of the 
progenitor mass from the bounce GW signal is as 
follows:

The overall accuracy is ~70%. This value corresponds 
to the idealized scenario characterized by only four 
progenitors and an absence of detector noise. Despite 
this, the ML method demonstrates limited capability in 
accurately extracting mass from the GW bounce 
signal. Under more realistic conditions, the accuracy is 
expected to be significantly lower (Mitra et al 2023).

The overall accuracy for classification of four EOS is 
~87% (Mitra et al 2024).  

The difference between ML accuracy and random 
selection accuracy (orange dots) is the highest when 
four EOSs are used. Following this, we perform 
classification analysis for four representative EOSs in 
the dataset of Richers et al (2017). The resulting 
confusion matrix is shown below.

The ML classification accuracy as a function of the 
number of EOSs included the training dataset is 
shown below.
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