Towards an understanding of collapsar gamma-ray burst

environments through circumstellar medium population synthesis
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1.THE PROBLEM 2. CSM POP SYNTH -2
Core-collapse gamma-ray burst (GRB) progenitors are Stellar evolution models can be used to predict the termi- 195 0
thought to be massive, stripped envelope stars, which nation shock radius R,i,q and wind density parameter A L -1
launch a jet through accretion onto a nascent compact for a given ISM density n, through analytic prescriptions
object [1]. These stars are expected to drive strong winds, for R,;in4(t) and jet propagation in r> and flat density pro- 100.0 0 I:IT
producing bubbles in the circumstellar medium (CSM). file environments. We make use of long GRB progenitor O -
The jet collides with the CSM and produces an afterglow models identified with the population synthesis code &L 75 0 -1 ¥
[2], but this often exhibits evolution consistent with a flat BPASS [5,6]. Using the semi-analytic wind bubble model ; -E—:E-;
density profile close to the star [3,4], in tension with the of [7], the results for our suite of GRB progenitor models —2 m"‘
expected wind profile around a massive progenitor. are shown in the two figures below. 20.0 o
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3. HYDROSIM CORRECTIONS = :
I
The model of [7] assumes no thermal pressure in the interstellar medium (ISM) and that the shocked shell is infi- 107 - i
nitely thin (i.e. the ISM is cold and dense). We perform 16 hydrodynamical simulations with PLUTO [8] (e.g. top : Ngw
_5 _
right) in various ISM environments, comparing to analytic results for the same stars (see right). We fit a trend, over 0 16 i :
ISM density and metallicity, to Ry anaiytic/ Rwhydro (b€low, center). We also fit a relationship between the stalled wind X i i
—f 4 L LR T 1 T T 1
(SW, the flat region between the wind and ISM) and ISM density. We use these relations to add the stalled wind re- 0 10-1 100 101
Rw,hydro

gion and improve R,,ing accuracy for every set of BPASS analytic results at minimal computational cost. r/ pc
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4. AFTERGLOW SAMPLE

We have shown that the gap between CSM theory

0.1 0.05 0.005
[
o

To compare with observations, we compile a dataset and observation persists at a population level. Con-

B e e
based on [9], adding radio data, and performing MCMC @3.. 8 § tributing factors may include wind strength overes-
afterglow fits [10]. Each dataset is fit with wind-like and 3 ; n- 6 i“g timation, magnetic confinement, or actual occur-
flat density profiles, and the better fit of the two is cho- . H. E rence in dense environments. It is unlikely that just
sen. The observed ratio of ISM/wind-like bursts is 45/29 m.- . one of these is responsible, but rather a combina-
= 1.55+0.37 (Poisson uncertainties). Wind-like environ- - - -“ﬂ tion of several effects [11].
ments have more energetic bursts (at 2o significance). - ol -ﬂ ?
The fits yield A for wind-like environments, n for con- -3'-0 22 13 05 03 12 20 28 37 45 53 62 70

A final thought: LFBOTs

Chrimes et al. (2024a,b) - Luminous Fast Blue Opti-
cal Transients (AT2018cow-like events) also show

: .. : log10(n/cm™3)
stant density and the emission radius at 11 rest-frame

hours, R, in each case.
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very dense Wolf-Rayet-like circumstellar media: do

We produce synthetic distributions of A, n and R, for 10°< n < they have similar progenitors to collapsar GRBs?
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10’ in order of magnitude steps. KS-tests between the synthetic 101 -

Radio-derived measurements —o— AT2020mrf
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and observed distributions are made at each density. For each

(synchrotron blast-wave model)
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of A, n, and R.,;;;, we determine the Ioglo(n/cm3) which best re-
produces observations. We find that log;o(n/cm?)=-1 best repro-
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duces the observed A distribution, 5 best reproduces n, 7 is best
for Remi: and 3 for the ratio of wind/ISM. Overall, high ISM densi-
ties of n=1000cmbest reproduce the observed distributions

Normalised cumulative frequency
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(e.g. right). High densities are required with our fiducial models

in order to push R,ing to lower radii.
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