RADIATION SHOCK BREAKOUT OF RSG WITH CSM
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ABSTRACT

We present new multidimensional radiation simulations of a 20 M RSG shock breakout with the CASTRO code. Shock breakout signal can

provide progenitors information and pre-explosion environment with

its extreme luminosity and short duration. Detailed opacity from OPAL

with Multi-Group Flux-Limited Diffusion provide double luminosity peaks on band from infrared ray to X-ray. We perform constant mass loss

rate CSM across 2 orders of magnltude ThIS work IS a great extension from SN1 987a of P2 AG- 022 to RSG progenltors
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L INTRODUCTION -

H
' The electromagnetic signals from supernovae (SNe) of massive stars begin when

the explosion shock breaks out of the stellar surface®. The so-called shock
breakout offer crucial insights into explosion energy, progenitor star radius, and
circumstellar environment (CSM) with the observed luminosity light curves (LCs)
and shock duration**. Previous models in 1D simulations fell short and create thin
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| METHODOLOGY |

| 1. CASTRO: After explosion shock reaching stellar surface in FLASH*, the
H progenitor is transferred to CASTRO, a compressible rad-hydros code.

Employing 2D cylindrical box with 10> cm and 1024 grids each side,
reflective and outflow are applied to the lower and upper boundaries,

| respectively. We use y law equation of state with poisson gravity.

1. Structures: We demonstrate structures formation of explosion shock

colliding with dense CSM that enhance both the Rayleigh-Taylor instabilities
| and reverse shock. (Fig. 1) The shock wave propagates and collide with
CSM, create inverse gradient of density and radiation pressure. Due to dense
environment, there are multiple-layers such that initial reverse shock
propagates back and hinder the secondary shock regions. IN the light CSM,

the reverse shock and Rayleigh-Taylor instabilities are not evident. (Fig.2)

LCs: Calculate LCs across wavelengths offer spectral energy distribution and

and UV radiation flux are vital for observation strategies, the post-breakout
| luminosity decline rate and offer indicators for shock breakout tail.

show double peaks for each wavelengths. (Fig. 3) Resulting LCs of X-Ray |
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'CONCLUSION

|

| 1. 2D simulations: We have extended shock duration due to 2D fluid mixing, in
H stead of the dense envelopes required in 1D simulations®. The post-breakout
P

luminosity decline rate for X-ray is up to L~4 mag day_1 while for UV band
is L. ~ 0.8 magday~!, so the dominant band transit to UV a day after the

peak luminosity. The system have the second peak at 450 hours after the

breakout, and are found to have L ~ 0.6 mag day~! afterwards.

Colored Opacity: Provide spectral energy distribution and cooling process
in LCs, we discovered that shock breakout is sensitive to pre-explosion
environment and can provide information of motion in stellar envelopes, late-
time stellar evolution , and binary systems.
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shell near the shock front, necessitating the shift to 2D simulations®. Recent 2D | | | o |
ﬂ rad-hydros simulations* can not evaluate heating and cooling of X-ray and UV | 2. Rad-Hydro: MGFLD govern interaction betweeno radiation flux and opacity.
emissions with grey opacity. Our research presents the first results of We choose 8 radiation groups covering 10 to 1 A (infrared ray to X-ray) and
| multidimensional multi-group rad-hydros simulations on red supergiants (RSGs). | calculate opacity from OPAL by separating partial degenerate electron
l We focus on a 20M, star* and compare observables of different CSM || scattering®, free-free, and bound-free opacity (k o< T%v77). We calculate
2
| calculated from constant mass loss rates across two orders of magnitude. The | LCs with different wavelength A and viewing angles 6 by L, o = 4ar°F, ,
l progenitor is around 40 times larger than the BSGs, having significant denser HH 3. Stellar Surface and CSM: We derived CSM from constant mass loss rate of
CSM that te | hock durati d di K luminosity. W :
al generate fonger S OC_ | Hrd |o.n a.n mmer pe.a HMINOSTy. We H aM ~ 6.46 x 107° M, yr_1 with a@ covering 2 orders of magnitude and
| employ 2D Multi-Group Flux Limited Diffusion (MGFLD) in CASTRO* and |
. . . wind velocity of 3 X 10®cm s™!
incorporating OPAL opacity tables™. | '
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