

Interaction of a Supernova Remnant with background interstellar turbulence G. Prete¹, S. Perri^{1,3}, L. Primavera^{1,3}, C. Meringolo², S. Servidio^{1,3}

¹Department of Physics, Università della Calabria, via P. Bucci, cubo 33C, 87036, Rende (CS), Italy ¹Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, DE ³National Institute for Astrophysics (INAF), Scientific Directorate, via del Parco Mellini 84, Roma, 00136, RM, Italy

Introduction

Particle acceleration in SNR shocks is testified by the presence of enhanced synchrotron emission from relativistic electrons detected at shock fronts, where magnetic fields are amplified . One of the common SNR that shows this kind of emission is **SN1006**. SN1006 is a Type Ia supernova (see Figure on the right), which has a bilateral morphology consisting of two bright limbs located in the north-eastern part (NE) and in the south-western part (SW), that present knots and filaments along the boundary of the remnant (**Bamba et al., 2003**).

In this work we will try to reproduce the evolution of SN1006 by means of the MagnetoHydroDynamic (MHD) PLUTO code (**Mignone et al., 2007**). We will simulate the expansion of the blast wave in a turbulent environment, following the idea of **Guo et al., 2012**. We perform a parametric study of the expansion of the SN in different turbulence conditions. A comparison with Chandra data has been performed.

64

Numerical model

MHD PLUTO code (**Mignone et al., 2007**) is used to reproduce the evolution of a SNR. The ideal MHD equations are

 $\begin{cases} \frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v}) = 0\\ \frac{\partial (\rho \boldsymbol{v})}{\partial t} + \boldsymbol{\nabla} \cdot (\rho \boldsymbol{v} \boldsymbol{v} - \boldsymbol{B} \boldsymbol{B}) + \boldsymbol{\nabla} P_t = 0\\ \frac{\partial \varepsilon}{\partial t} + \boldsymbol{\nabla} \cdot \left[(\varepsilon + P_t) \boldsymbol{v} - (\boldsymbol{v} \cdot \boldsymbol{B}) \boldsymbol{B} \right] = 0\\ \frac{\partial \boldsymbol{B}}{\partial t} - \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B}) = 0. \end{cases}$

$$\varepsilon = \frac{P}{\gamma - 1} + \frac{1}{2}\rho v^2 + \frac{B^2}{2}$$

MHD equations must satisfy divergence free condition

 $\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0$

Numerical set up

Typical initial conditions for a SNR: **2D Cartesian (x, y) uniform grids**

L = 30 pc
$$R_{SN,0}^{}$$
 = 0.4 pc $L_{z}^{}$ = 0.8pc $M_{ej}^{}$ = 1.4 $M_{\odot}^{}$

 $E_{ej} = 1.5 \times 10^{51} \text{ erg } \gamma = 5/3 \quad t_0 = 10 \text{ years}$ $n_{inj} = 13.3 \text{ cm}^{-3} \quad n_{out} = 0.1 \text{ cm}^{-3}$ $t_{fin} = 10^3 \text{ years } \text{ Sedov-Taylor phase, energy is conserved}$

 $B_0 = 3 \mu G$ and its direction in spherical coordinates

$$\begin{cases} B_x = B_0 cos(\phi) sin(\tilde{\theta}) \\ B_y = B_0 sin(\phi) sin(\tilde{\theta}) \\ B_z = B_0 cos(\tilde{\theta}). \end{cases} \quad \theta = 90^\circ, \phi = 150^\circ \text{ from Reynoso et al., 2013} \end{cases}$$

Initial condition: in-plane mean magnetic field overimposed to a synthetic 2D isotropic turbulence (Servidio et al., 2012, Giacalone & Jokipii 2007).

Numerical results

6

Final time of the simulation obtained setting δ **B**/**B**=0.5 and δ n/n = 1.

Autocorrelation functions

Autocorrelation function to probe plasma anisotropies on a Heavyside ring mask

Chandra observations

Autocorrelation function to probe plasma anisotropies on a Heavyside ring mask

References

[1] Helder, E. A., Vink, J., Bykov, A. M., et al. 2012, Space430
Science Reviews, 173, 369,431
[2] Guo, F., Li, S., Li, H., et al. 2012, The Astrophysical Journal, 747, 98

[3] Servidio, S., Valentini, F., Califano, F., & Veltri, P. 2012, Physical review letters, 108, 045001

[4] Bamba, A., Yamazaki, R., Ueno, M., & Koyama, K. 2003, The Astrophysical Journal, 589, 827

[5] Bell, A. 1978a, Monthly Notices of the Royal Astronomical Society, 182, 443

[6] Reynoso, E. M., Hughes, J. P., & Moffett, D. A. 2013, The Astronomical Journal, 145, 104

Conclusions

- We studied the evolution of a shock wave associated to a SNR by means of MHD-PLUTO code simulations, coupled with synthetic turbulence.
- The autocorrelation maps suggest, in most of the cases, that the correlation scale of turbulence is larger in the direction quasi perpendicular to B and shorter along it.
- We found a preliminary good agreement between numerical results and Chandra spacecraft data in the behavior of the autocorrelation function.

giuseppe.prete@unical.it

6