
## Search for $\gamma$ -ray emission from SNRs in the Large Magellanic Cloud: preliminary results of a new cluster analysis at energies above 4 GeV

Andrea Tramacere<sup>1</sup>, Riccardo Campana<sup>2</sup>, Enrico Massaro<sup>3</sup>, Fabrizio Bocchino<sup>4\*</sup>, Marco Miceli<sup>4</sup>, Salvatore Orlando<sup>4</sup> <sup>1</sup> UniGE, Geneva, Switzerland – <sup>2</sup> INAF/OAS, Bologna, Italy – <sup>3</sup> INAF/IAPS, Rome, Italy – <sup>4</sup> INAF/IASF-Palermo, Italy – \*Presenter

In a previous analysis (Campana et al. 2022, MNRAS 515, 1676) we presented the results of a search for y-ray emission from SNRs in the Large Magellanic Cloud (LMC) based on the detection of concentrations in the arrival direction of Fermi-LAT photons of at energies >10 GeV, in the time window since August, 4 2008 to August, 4 2020 (12 years) and applied two different clustering methods: Minimum Spanning Tree (MST; Campana et al. 2008, 2013), and Density Based Spatial Clustering of Applications with Noise (DBSCAN; Tramacere & Vecchio 2013). In the present contribution we report the preliminary results of a new search using a 15-year-long (up to August, 4 2023) data set, a broader energy range (>4 GeV), and combining the DBSCAN with the DENCLUE algorithm (Tramacere et al. 2016). We confirm the results of previous paper and found positive indication for at least 8 new clusters with a spatial correspondence with other SNRs, increasing thus the number of remnants in LMC candidate or detected in the high energy y rays to more than 14 sources.



Left: Map in Galactic coordinates of the sky region. Red crosses mark the positions of 4FGL-DR4 sources; blue squares are the SNRs in the Maggi et al. (2016) catalogue and filled squares are those with an X-ray Iuminosity higher than 10<sup>36</sup> erg/s; green diamonds are confirmed sources found in Campana et al. 2022; orange triangles are new candidate sources found in the present analysis.

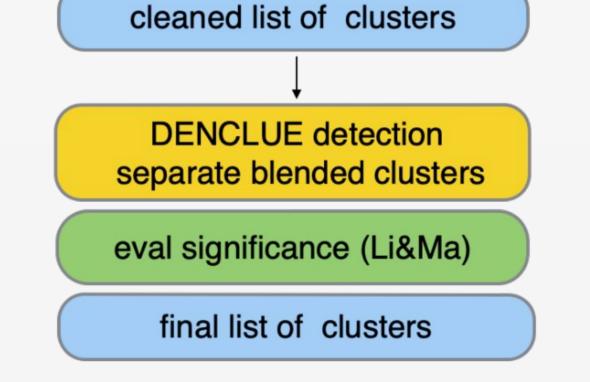
## **15 YEARS FERMI-LAT** DATA ABOVE 4 AND 10 GEV FOR THE LMC REGION

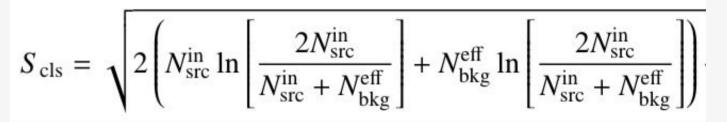
Prepare data accumulated by Fermi/LAT between 2008 and 2020 in the  $73^\circ < l < l$  $285^{\circ}$  and  $-38^{\circ} < b < -29^{\circ}$  **LMC** region, above 6 and 10 GeV, and apply...

> DBSCAN EPS parameter: radius of the scanning brush set close to the PSF(E) value,  $\sim 0.1$  Deg in the present analysis

DBSCAN K parameter: threshold for core points, set to K= N sqrt( $\Omega_{EPS} \rho_{bkg}$ ), where N is the BKG rejection confidence level (4 in the present analysis) and  $\Omega_{EPS}$  is the angular extent of the scanning brush

...two different **source detection** algorithms able to find photon **clusters** in  $\gamma$ -ray data...


MST


ALGORITHM

**DBSCAN+DENCLUE** 

ALGORITHM

The MST is used for searching concentrations in a field of points by means of tree connecting all the points with the minimum total distance and cutting all the edges above a fixed value. The significance of a cluster is measured by the parameter M, depending on its number of points and the concentration ratio to the mean in the entire field.





N<sup>in</sup><sub>src</sub>: numbers of photons within the cluster radius

N<sup>eff</sup><sub>bkg</sub>: numbers of expected bkg photons within the cluster radius, estimated from the angular density of photons, once the DBSCAN detected cluster are removed, and the sum of their angular extent has been subtracted from the field angular extent

 $S_{cls}>3$  in the present analysis

## SOURCE CANDIDATE LIST: LOOK FOR SNRS

...and look for **associations** between the clusters found and known LMC SNRs (from the Maggi et al. 2016 catalogue).

**Confirmed SNRs** in  $\gamma$ -rays, already reported by us (Campana et al, 2018,2022) and by the Fermi/LAT collaboration (Ackermann et al., 2016)

| RANGE          | TYPE                                                                               | D                                                                                                                 | $L_X$                                                                                                                               | $S_{\rm cls}4$                                                                                                                                                                                                     | $S_{\rm cls}10$                                                                                                                                                                                                                                                                                                                          | Δ                                                                                                                                                                                                                                                                                                                                                                                             | MST M                                                                                                                                                                                                                                                                                                                                                                                                                           | Notes                                                                                                                                                                                                                                                                                                                                      |
|----------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathrm{GeV}$ |                                                                                    | 1                                                                                                                 | $10^{35} {\rm ~erg~s^{-1}}$                                                                                                         |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          | /                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                    |                                                                                                                   |                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×.                                                                                                                                                                                                                                                                                                                                         |
| >6;10          | _                                                                                  | 4.3                                                                                                               | 0.90                                                                                                                                | 4.8                                                                                                                                                                                                                | 3.3                                                                                                                                                                                                                                                                                                                                      | 3.7                                                                                                                                                                                                                                                                                                                                                                                           | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| >6;10          | $\mathbf{C}\mathbf{C}$                                                             | 2.1                                                                                                               | 315.04                                                                                                                              | 6.6                                                                                                                                                                                                                | 4.6                                                                                                                                                                                                                                                                                                                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                           | 57.6                                                                                                                                                                                                                                                                                                                                                                                                                            | 4FGL                                                                                                                                                                                                                                                                                                                                       |
| >6*;10         | $\mathbf{C}\mathbf{C}$                                                             | 2.8                                                                                                               | 38.03                                                                                                                               | *5.6                                                                                                                                                                                                               | *3.9                                                                                                                                                                                                                                                                                                                                     | 3.4                                                                                                                                                                                                                                                                                                                                                                                           | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| >6*;10         | CC-SGR                                                                             | 1.4                                                                                                               | 64.37                                                                                                                               | *5.6                                                                                                                                                                                                               | *3.9                                                                                                                                                                                                                                                                                                                                     | 3.5                                                                                                                                                                                                                                                                                                                                                                                           | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| >10            |                                                                                    | 4.5                                                                                                               | 1.99                                                                                                                                | 4.4                                                                                                                                                                                                                | 3.5                                                                                                                                                                                                                                                                                                                                      | 4.1                                                                                                                                                                                                                                                                                                                                                                                           | 58.8                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |
| >6;10          | $\mathbf{C}\mathbf{C}$                                                             | 1.4                                                                                                               | 185.68                                                                                                                              | 6.5                                                                                                                                                                                                                | 4.1                                                                                                                                                                                                                                                                                                                                      | 0.4                                                                                                                                                                                                                                                                                                                                                                                           | 53.7                                                                                                                                                                                                                                                                                                                                                                                                                            | 4FGL                                                                                                                                                                                                                                                                                                                                       |
| >6;10          | CC-PWN                                                                             | 2.0                                                                                                               | 15.00                                                                                                                               | 18.8                                                                                                                                                                                                               | 11.6                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                                                                                                                                                                                                                                                                                                                           | 577.4                                                                                                                                                                                                                                                                                                                                                                                                                           | 4FGL                                                                                                                                                                                                                                                                                                                                       |
| >10            | CC-PSR                                                                             | 1.2                                                                                                               | 87.35                                                                                                                               | 8.7                                                                                                                                                                                                                | 4.8                                                                                                                                                                                                                                                                                                                                      | 5.3                                                                                                                                                                                                                                                                                                                                                                                           | 35.4                                                                                                                                                                                                                                                                                                                                                                                                                            | 4FGL                                                                                                                                                                                                                                                                                                                                       |
|                |                                                                                    |                                                                                                                   |                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |
| > 6            |                                                                                    | 1.9                                                                                                               | 1.09                                                                                                                                |                                                                                                                                                                                                                    | 3.7                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |
| cluster a      | t energies l                                                                       | ower                                                                                                              | $\cdot$ than 10 GeV                                                                                                                 | 1                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                                                                                                         |
| neter          |                                                                                    |                                                                                                                   |                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                            |
|                | GeV<br>>6;10<br>>6;10<br>>6*;10<br>>6*;10<br>>6;10<br>>6;10<br>>10<br>>6;10<br>>10 | GeV   >6;10 -   >6;10 CC   >6*;10 CC   >6*;10 CC-SGR   >10 CC   >6;10 CC   >6;10 CC-PWN   >10 CC-PSR   > 6 CC-PSR | GeV $\prime$ >6;10-4.3>6;10CC2.1>6*;10CC2.8>6*;10CC-SGR1.4>104.5>6;10CC1.4>6;10CC-PWN2.0>10CC-PSR1.2> 61.9cluster at energies lower | GeV' $10^{35} \text{ erg s}^{-1}$ >6;10-4.30.90>6;10CC2.1315.04>6*;10CC2.838.03>6*;10CC-SGR1.464.37>104.51.99>6;10CC1.4185.68>6;10CC-PWN2.015.00>10CC-PSR1.287.35> 61.91.09. cluster at energies lower than 10 GeV | GeV ' $10^{35} \text{ erg s}^{-1}$ >6;10 - 4.3 0.90 4.8   >6;10 CC 2.1 315.04 6.6   >6*;10 CC 2.8 38.03 *5.6   >6*;10 CC-SGR 1.4 64.37 *5.6   >10 4.5 1.99 4.4   >6;10 CC 1.4 185.68 6.5   >6;10 CC 1.4 185.68 6.5   >6;10 CC-PWN 2.0 15.00 18.8   >10 CC-PSR 1.2 87.35 8.7   > 6 1.9 1.09 -   cluster at energies lower than 10 GeV - - | GeV ' $10^{35} \text{ erg s}^{-1}$ >6;10 - 4.3 0.90 4.8 3.3   >6;10 CC 2.1 315.04 6.6 4.6   >6*;10 CC 2.8 38.03 *5.6 *3.9   >6*;10 CC-SGR 1.4 64.37 *5.6 *3.9   >10 4.5 1.99 4.4 3.5   >6;10 CC 1.4 185.68 6.5 4.1   >6;10 CC 1.4 185.68 6.5 4.1   >6;10 CC-PWN 2.0 15.00 18.8 11.6   >10 CC-PSR 1.2 87.35 8.7 4.8   > 6 1.9 1.09 — 3.7   cluster at energies lower than 10 GeV 10 GeV 10 GeV | GeV ' $10^{35} \text{ erg s}^{-1}$ '   >6;10 - 4.3 0.90 4.8 3.3 3.7   >6;10 CC 2.1 315.04 6.6 4.6 1.8   >6*;10 CC 2.8 38.03 *5.6 *3.9 3.4   >6*;10 CC-SGR 1.4 64.37 *5.6 *3.9 3.5   >10 4.5 1.99 4.4 3.5 4.1   >6;10 CC 1.4 185.68 6.5 4.1 0.4   >6;10 CC 1.4 185.68 6.5 4.1 0.4   >6;10 CC-PWN 2.0 15.00 18.8 11.6 1.6   >10 CC-PSR 1.2 87.35 8.7 4.8 5.3   > 6 1.9 1.09 - 3.7   cluster at energies lower than 10 GeV S.7 S.7 | GeV $' 10^{35} \text{ erg s}^{-1}$ $'$ >6;10-4.30.904.83.33.728.7>6;10CC2.1315.046.64.61.857.6>6*;10CC2.838.03*5.6*3.93.420.0>6*;10CC-SGR1.464.37*5.6*3.93.518.4>104.51.994.43.54.158.8>6;10CC1.4185.686.54.10.453.7>6;10CC-PWN2.015.0018.811.61.6577.4>10CC-PSR1.287.358.74.85.335.4> 61.91.09-3.7. cluster at energies lower than 10 GeV |

| <b>I NEW! SNRs</b> in $\gamma$ -rays |              |      |        |                                    |                |                   |       |       |  |  |
|--------------------------------------|--------------|------|--------|------------------------------------|----------------|-------------------|-------|-------|--|--|
| SNR                                  | RANGE<br>GeV | TYPE | D<br>, | $L_X$ $10^{35} \text{ erg s}^{-1}$ | $S_{\rm cls}4$ | $\Delta_{\prime}$ | MST M | Notes |  |  |
| B0453-685                            | >4           | CC   | 2.0    | 13.85                              | 3.7            | 2.0               | 18.3  | m     |  |  |
| DEM L241                             | >4           |      | 5.3    | 3.84                               | 5.2            | 1.2               | 56.7  | m     |  |  |
| B0532-675                            | >4           |      | 4.7    | 2.48                               | 3.1            | 5.4               | 23.5  |       |  |  |
| (HP99)1139                           | >4           |      | 4.4    | 1.44                               | 3.1            | 6.4               | 17.8  | e     |  |  |
| N 103B                               | >4           | Ia   | 0.5    | 51.70                              | 3.3            | 2.7               | 18.8  | m     |  |  |
| B0519 - 690                          | >4           | Ia   | 0.6    | 34.94                              | 4.2            | 5.0               | 26.6  | m     |  |  |
| DEM L316A                            | >4           | CC?  | 3.2    | 1.26                               | 4.7            | 4.1               | 21.5  | Nf, m |  |  |

 $\Delta$ : angular separation

 $L_X$ : X-ray luminosity in the band 0.3–8 keV from the Maggi et al. (2016) catalogue

m : angular distance from MS1 centroid position e : MST magnitude at energies >6 GeV.

Nf : M value obtained in a field with  $b > -31^{\circ}$ .

We report the significant detections of six SNRs, including the most energetic remnants of Core-Collapse (CC) type. The high energy detection of the very young SN1987A remains uncertain because it is located in the bright diffuse local emission in the 30 Doradus complex. We remark that the emission from N63A, early reported by Campana et al. 2018, is now confirmed by its presence in the 4FGL-DR4 catalog of the Fermi-LAT collaboration