3D mapping of the ejecta of SN1987A from ALMA data

Roger Wesson, Matt Lyons, Jack Wildman, Mikako Matsuura (Cardiff University, Wales, UK); Michael Gabler (UV, Spain); Anita Richards (Manchester, UK)

SN1987A exploded on 23 February 1987, at a distance of 51.4 kpc

It was a core-collapse supernova, but with a blue supergiant progenitor

After the explosion, preexisting rings of circumstellar material were discovered

The distance to SN1987A allows its expanding ejecta to be spatially resolved

The 3D distribution and velocities of the material within the ejecta are predictions of explosion models

We have analysed ALMA observations of the remnant tracing CO 2-1 (230GHz) and 6-5 (691GHz), and SiO 5-4 (217GHz) and 6-5 (260GHz), \sim 10,000 - \sim 12,000 days after the explosion

3D mapping of the ejecta of SN1987A from ALMA data

The data cubes have a spatial resolution of 0.06 arcsec (3000 AU), and velocity resolutions of 100 or 300 km/s

To calculate the 3D distribution of these molecules, we first mask out data below a noise threshold estimated from regions beyond the equatorial ring

3D mapping of the ejecta of SN1987A from ALMA data

CO 2-1

3D mapping of the ejecta of SN1987A from ALMA data

SiO 6-5

3D mapping of the ejecta of SN1987A from ALMA data

SiO 5-4

3D mapping of the ejecta of SN1987A from ALMA data

SiO 6-5

3D mapping of the ejecta of SN1987A from ALMA data

SiO 5-4

3D mapping of the ejecta of SN1987A from ALMA data

We then calculate the radial mass distribution for each molecule

Table: Stellar models

Name	Туре	mass	E _{expl}	eta-decay	sim. time	Ref.
		[<i>M</i> _☉]	[10 ⁵¹ erg]		[d]	
B15 _{without}	BSG	15	1.39	no $eta-{\sf decay}$	361	Woosley et al. 1998
B15	BSG	15	1.39	without tracer	361	Woosley et al. 1998
$B15_X$	BSG	15	1.39	including tracer X	358	Woosley et al. 1998
N20	BSG	20	1.65	without tracer	362	Shigeyama et al. 1990
L15	RSG	15	1.75	without tracer	321	Limongi et al. 2000
W15	RSG	15	1.47	without tracer	373	Woosley et al. 1995

We compare these with some state of the art supernova explosion simulations

CO, +10054 days

We compare these with some state of the art supernova explosion simulations

SiO, +10054 days

We compare these with some state of the art supernova explosion simulations

SiO, +11216/11855 days

B15 models can be brought into somewhat better agreement with $1.5 \times$ higher velocities.

CO, +10054 days, predicted velocities scaled by 1.5x

3D mapping of the ejecta of SN1987A from ALMA data

B15 models can be brought into somewhat better agreement with $1.5 \times$ higher velocities.

SiO. +10054 days, predicted velocities scaled by 1.5x

3D mapping of the ejecta of SN1987A from ALMA data

B15 models can be brought into somewhat better agreement with $1.5 \times$ higher velocities.

SiO, +11216/11855 days, predicted velocities scaled by 1.5x

Summary

- From ALMA observations of the remnant of SN1987A, We have determined the 3D distribution of CO 2-1 and 6-5 transitions, and SiO 5-4 and 6-5 transitions
- We calculate the fractional mass distribution against velocity for each transition and compare it to the predictions of state of the art simulations
- None of the models provides a good match to the observations "out of the box".
- However, B15 models can be brought into somewhat better agreement by scaling velocities by 1.5×, while N20, L15 and W15 models still disagree.
- This would imply a rather implausible increase of the explosion energy by $\times 2$

Postscript: I travelled here overland from the UK

- CO₂ emissions from return flight Cardiff to Chania: 0.96t
- CO₂ emissions from trains, buses and ferries: 96% less, only 42kg!

3D mapping of the ejecta of SN1987A from ALMA data