

+ Collaborators J. Larsson, J. Sollerman, P. Lundqvist, J.Spyromilio, J. D. Lyman, and G. Olofsson

Spatial Variations and Breaks in the Optical-NIR Spectra

of the Pulsar and Pulsar-wind Nebula in SNR 0540-69.3

Linda Tenhu, PhD Student at KTH Sweden

Located ~50 kpc away at the LMC

1100-1200 yr old

Oxygen rich

Massive star progenitor

Type II SN explosion

Forward Shock ~30" (7 pc) from centre

PWN and PSR

PSR and PWN amongst those few that are bright in optical

PSR has a fast spin period ~50 ms

lcetenhu@kth.se Linda Tenhu

+ orientation on the sky

Complex PSR and PWN in SNR 0540: Spin-down rate change early 2010 (Marshall+15) **PWN X-ray luminosity increase** (Ge+19)

Recently: first ever anti-glitch observed for a rotationally powered-pulsar (Tuo+24)

VASA/CXC/SAO

PSR AND PWN 0540: THIS TALK

Optical synchrotron emission from PSR and PWN Previous studies on 0540: conflicting results Model this emission with a Power Law for both PSR and PWN spectral index (or broken Power Law): $F_{\nu} \propto \nu^{-\alpha}$ spectral index **Optical studies on other PWNe:**

(broken Power Law with **2** separate spectral indices)

Question:

What is the spectral index that best describes the PSR and PWN of SNR 0540?

Answer:

Learn more about the conditions at the emission sites

Linda Tenhu lcetenhu@kth.se

Spatial variations and breaks in the optical spectra of SNR 0540 SNR III @ Chania, 9-14 June 2024

Photometry on the Crab Nebula by Véron-Cetty+93

Canonical synchrotron cooling picture

Other wavelength ranges:

Similar results in X-rays (e.g Mori+04, Hu+22)

MUSE and X-Shooter Observations @ VLT

X-rays, 1.7' across

Larsson+21

Linda Tenhu

lcetenhu@kth.se

MUSE

IFU data: 4650–9300 Å Entire FoV: 1'.0 x 1'.0 Observed: Jan & Mar 2019

X-shooter Slit-spectroscopy: 3000-25 000 Å Slit dimensions: 1".2—1".6 x 11" Observed: Oct & Nov 2019 First NIR spectrum of the source!

Data Preparation: Main Steps

Obtain uniform spatial resolution: MUSE PSF varies with wavelength \rightarrow convolve each wavelength to the same resolution

Isolating the continuum spectrum Remove emission lines and other non-continuum features

Correct for extinction Measure the Balmer decrement around the PWN: $E(B - V) = 0.27 \pm 0.07.$ Larger by ~0.07 compared to previous measurements (Kirshner+89, Serafimovich+04)

0.3 0.4 0.5 0.1 0.2 $\left(\right)$

E(B-V) (mag)

Spatial variations and breaks in the optical spectra of SNR 0540

Linda Tenhu

lcetenhu@kth.se

Spatial variations and breaks in the optical spectra of SNR 0540

6

PWN: Fit Continuum Spectrum

 $\lambda (10^3 \times \text{\AA})$

5

Flux of A + 0.125

Soft (steep) spectrum: $\alpha = 1.064 \pm +0.007$

mean uncertainties

Hard (flat) spectrum: $\alpha = 0.83 \pm +0.02$

14.8

14.7

Spatial variations and breaks in the optical spectra of SNR 0540

Spatial spectral hardening towards PWN outer edge: from $\alpha \sim 1.1$ to $\alpha \sim 0.1$

Linda Tenhu

lcetenhu@kth.se

Spatial Spectral Index Variation: SNR 0540 vs Crab

0.60.8 1.0 \bigcirc

Spatial spectral hardening towards PWN outer edge:

$$\alpha \sim 1.1 \rightarrow \alpha \sim 0.1$$

Linda Tenhu

lcetenhu@kth.se

Spatial variations and breaks in the optical spectra of SNR 0540 SNR III @ Chania, 9-14 June 2024

Spatial spectral softening towards PWN outer edge:

 $\alpha \sim 0.6 \rightarrow \alpha \sim 1$

= canonical synchrotron cooling

Other non-synchrotron components in the continuum like Balmer recombination continuum or two-photon emission?

Linda Tenhu [SIII] lcetenhu@kth.se [S III] + continuum

Observations

Continuum spectrum

Spatial Spectral Index Variation: SNR 0540 vs Crab 0.60.8 1.0 \bigcirc 1.2 Véron-Cetty+93

Spatial spectral hardening towards PWN outer edge:

$$\alpha \sim 1.1 \rightarrow \alpha \sim 0.1$$

 α

Continuum flux

Other non-synchrotron components in the continuum like Balmer recombination continuum or two-photon emission?

What can cause this unexpected result?

PWN: fits

Spatial spectral softening towards PWN outer edge:

 $\alpha \sim 0.6 \rightarrow \alpha \sim 1$

= canonical synchrotron cooling

Time variability of the pulsar wind?

Re-acceleration of particles further out in the system?

PSR & PWN in SNR 0540

Observations

PWN 0540 Spectrum from the Radio to X-rays

Linda Tenhu

lcetenhu@kth.se

Spatial variations and breaks in the optical spectra of SNR 0540

PWN: fits

Summary

PSR & PWN in SNR 0540

Observations

PWN 0540 Spectrum from the Radio to X-rays

Linda Tenhu

lcetenhu@kth.se

Spatial variations and breaks in the optical spectra of SNR 0540

PWN: fits

SNR III @ Chania, 9-14 June 2024

PSR: Fit Continuum Spectrum One of the pulsars that can be observed in the optical

Remove PWN contribution from the PSR spectrum Better than previously thanks to the IFU data Caveat: significant PWN contribution \rightarrow difficult to remove perfectly

Now we have got optical spectrum!

 $\log_{10} F_{\nu} (\text{erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1})$

 $D - M_{PL}$

 $D - M_{BPL}$ σ

Spatial variations and breaks in the optical spectra of SNR 0540

SNR III @ Chania, 9-14 June 2024

Remove PWN contribution from the PSR spectrum Better than previously thanks to the IFU data Caveat: significant PWN contribution \rightarrow difficult to remove perfectly

Previously in optical: no break! Mignani+12 : $\alpha = 0.7 \pm 0.04$ Serafimovich+04: $\alpha = 1.07^{+0.20}_{-0.19}$

How this connects to other wavelengths: Mignani+19 UV: $\alpha \sim 3$!

Caveats: $D - M_{PL}$ Early 2010s: Spin-down rate change σ + PWN X-ray luminosity change $D - M_{BPL}$ (Marshall+15, Ge+19) σ Recent: anti-glitch (Tuo+2024)

 $\log_{10} \nu$

Spatial variations and breaks in the optical spectra of SNR 0540

SNR III @ Chania, 9-14 June 2024

Very different pulsar spectra!

Fit: Sollerman+19, $\alpha = -0.16 \pm 0.07$

Perhaps these objects are not as similar as previously thought?

Differences in pulsars propagating to PWNe?

 $D - M_{PL}$ σ

 $D - M_{BPL}$ σ

Crab PSR vs PSR 0540

Spatial variations and breaks in the optical spectra of SNR 0540

PSR & PWN in SNR 0540

Observations

PWN in SNR 0540

Spatial spectral hardening towards PWN outer edge

Opposite to the canonical synchrotron cooling picture

Véron-Cetty+93

Crab Nebula

 \rightarrow calls for more (optical) observations

lcetenhu@kth.se

Spatial variations and breaks in the optical spectra of SNR 0540 SNR III @ Chania, 9-14 June 2024

Differences in pulsars propagating to PWNe? See more information: Tenhu+24

