New larger sample of SNRs in NGC 7793, using MUSE IFS

SUPERNOVA REMNANTS III AN ODYSSEY IN SPACE AFTER STELLAR DEATH

Steller alter to

GOBIERNO

ESPAÑA

MINISTERIO DE CIENCIA E INNOVACIÓN

Collaborators: Jiménez-Palau C., Galbany L., Boumis P., González-Díaz R.

Maria Kopsacheili

Institute of Space Sciences

Optical Identification of SNRs: Traditional Diagnostic

Dopita et al. 1977 Dodorico et al., 1978)

M31: Lee & Lee 2014

NGC 2403: Leonidaki et al. 2013

Winkler et al.

Multi-line diagnostics for the optical identification of SNRs

Shock and photoionization models from MAPPINGS III Shock \rightarrow SNRs, Photoionization \rightarrow HII regions

Ċ

The diagnostics can be found at: https://github.com/mariakop21/Diagnostics-for-SNR-identification

<u>New diagnostics:</u> 2D and 3D [N II] <u>[S II]</u>, [O I] <u>[O I]</u>, [O II] <u>[O II]</u> + Support Vector Machine $H\alpha$, $H\alpha$, $H\alpha$, $H\alpha$, $H\beta$, $H\beta$, $H\beta$

Completeness > 90% Contamination < 6%

Completeness > 98% Contamination < 2%

More studies on the optical identification of SNRs

Velocity broadening (Points et al. 2019)

$\xi = \sigma \frac{[S II]}{H\alpha}$ (Sébastien Vice

 Combination of emission line ratios: Sabbadin plots and BPT diagrams, traditional diagnostic (Moumen et al. 2019, Congiu et al. 2023) with velocity dispersion (Jing Li et al. 2024)

(Sébastien Vicens-Mouret et al. 2023)

MUSE data - SNRs in NGC 7793

Ha + [N II] image obtained by 4m Blanco telescope at CTIO

$1 \cdot \frac{[S II]}{H\alpha} - \frac{[N II]}{H\alpha} = 3 \cdot \frac{[N II]}{H\alpha} - \frac{[O III]}{H\beta}$ $2 \cdot \frac{[S II]}{H\alpha} - \frac{[O III]}{H\beta} = 4 \cdot \frac{[S II]}{H\alpha} > 0.4$ $5 \cdot \frac{[N II]}{H\alpha} - \frac{[S II]}{H\alpha} - \frac{[S II]}{H\alpha} - \frac{[O III]}{H\beta}$

30.0

· · · ·

•

• •

•

Recent study - SNRs in NGC 7793

Hα Multi-line diagnostics Increase the number of SNRs by a factor of 2

Final sample:

Combination of all the diagnostics

Emission lines and emission line ratios > 3σ .

Supernova Remnants in NGC 7793

~ 240 SNRs

55.0

5 [S II] λλ6717, 6731 Ηα λ6563 [O III] λ5007 50.0

45.0

23:57:40.0

00

Velocity Dispersion

15 - 70 km s⁻¹ (mean: 27 km s^{-1})

9 candidates out of the range suggested by Points et al. 2019 (19 - 110 km s⁻¹) Velocities between 18-19 km s⁻¹ Mean values > not excluded

٠

1D Luminosity Functions

2D [S II]-Ha Luminosity Function

٠

1D Luminosity Functions

2D [N II]-Ha Luminosity Function

٠

1D Luminosity Functions

2D [N II]-[S II] Luminosity Function

٠

1D Luminosity Functions

2D [O III]-[S II] Luminosity Function

٠

1D Luminosity Functions

2D [O III]-[N II] Luminosity Function

SI

 $H\alpha$

|N||

 $H\alpha$

Constructed using shock models from MAPPINGS III (Allen et al., 2008)

Observed emission line ratios: Interpolation in Shock models

Shock Velocities

Shock Velocities

Shock Velocity distribution of SNRs (~ 34% of the sample)

~ 70% < 300 km/s

 $|\mathbf{O}|||$

 $H\beta$

SII

 $H\alpha$

NII

 $H\alpha$

Constructed using shock models from MAPPINGS III (Allen et al., 2008)

Observed emission line ratios: Interpolation in Shock models

Shock Velocities

Pre-shock Densities

[S II] 6716/6731 \rightarrow Density

PYNEB

Input:

observed [S II] 6716/6731 + Temperature

<u>Output:</u> Density

Median values:

 $T = 5 \times 10^{3} \text{ K} \rightarrow \sim 70 \text{ cm}^{-3}$ $T = 1 \times 10^{4} \text{ K} \rightarrow \sim 80 \text{ cm}^{-3}$ $T = 3 \times 10^{4} \text{ K} \rightarrow \sim 160 \text{ cm}^{-3}$ $T = 5 \times 10^{4} \text{ K} \rightarrow \sim 240 \text{ cm}^{-3}$

X-ray candidate SNRs in NGC 7793

Hα+[N II] (Blanco 4m telescope) 0.5-1.2 keV (Chandra) 1.2-2.0 keV (Chandra)

Archival Chandra data

•	•		••		
OBS ID	Exp.	PI	RA	DEC	Start
	(ks)		(J2000)	(J2000)	
3954	48.94	Pannuti	23:57:49.8	-32:35:29.5	2003
14231	58.84	Soria	23:57:59.9	-32:33:20.9	2011-
13439	57.77	Soria	23:57:59.9	-32:33:20.9	2011-
14378	24.71	Soria	23:57:59.9	-32:33:20.9	2011-
23266	29.69	Walton	23:57:51.0	-32:37:26.6	2020-
27481	9.95	Brightman	23:57:49.9	-32:35:27.7	2022-

X-ray candidate SNRs in NGC 7793

Ha+[N II] (Blanco 4m telescope) 0.5-1.2 keV (Chandra) 1.2-2.0 keV (Chandra)

ID	Lbroad (erg s ⁻¹)	S/Nbroad*	S/N _{sof}
5	3.43 (0.93) x10 ³⁶	2.43	2.29
21	2.85 (0.90) x10 ³⁶	2.14	1.48
22/136	1.16 (0.19) x10 ³⁷	5.09	5.05
23/126	1.69 (0.86) x10 ³⁶	1.23	1.12
24/91	8.47 (1.60) x10 ³⁶	4.39	4.2
	•		

*broad: 0.5-7.0 keV, **soft: 0.5 - 1.2 keV

Optical: Blair & Long (1997) Kopsacheili et al. (2021, 2024) Xrays: Pannuti et al. (2011) Radio: Pannuti et al. (2002), Galvin et al. 2014

X-ray candidate SNRs in NGC 7793

Hα+[N II] (Blanco 4m telescope) 0.5-1.2 keV (Chandra) 1.2-2.0 keV (Chandra) Looking for correlations...

ID	Lbroad (x10 ³⁶ erg s ⁻¹)	LHa (x10 ³⁶ erg s ⁻¹)	L[O II (x10 ³⁶ er
5	3.43	1.64	•
21	2.85	22.9	42.8
22/136	1.16	6.56	4.18
23/126	1.69	10.6	9.59
24/91	8.47	11.6	37.7

Spectroscopy: Kopsacheili et al. 2024 Blair & Long 1997 Photometry: Kopsacheili et al. 2021

Multi-line diagnostics

Shock velocity (km s⁻¹)

Correlation between density and shock velocity?

Slight or no correlation between shock velocity and density.

[S II]/Ha ratios?

[S II]/Hα ratio

Hardness ratios - Color color diagrams

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -0.5 log(S/H)

X-ray candidate SNRs kT1 = 0.83 kT1 = 0.64kT2 = 0.15 kT2 = 0.10

kT1 = 0.80kT2 = 0.09

kT1 = 0.82kT2 = 0.15

group_combined_22.pi

Useful Data for the new diagnostics

Integral Field Spectroscopy (IFS)

2D field of view + 1D wavelength

VLT MUSE:

FOV: 59.9"x 60.0"

Spatial Sampling: 0.2"/pixel

Resolving Power: 1770 (480 nm) - 3590 (930 nm)

