Particle Acceleration at SNR Shocks: Bridging Simulations and Observations

Damiano Caprioli University of Chicago

with C. Haggerty (UHawai'i), R. Diesing (IAS), L. Orusa (Princeton), P. Blasi (GSSI)

Platanias, Crete June 13, 2024

The SNR paradigm for the origin of CRs

Energetics: ~10% of SN kinetic energy can account for Galactic CRs (Baade-Zwicky34)

Mechanism: Fermi acceleration at SNR shocks is *first-order* and produces powerlaws. Diffusive Shock Acceleration (DSA) (Krimskii77,Axford+78,Bell78,Blandford-Ostriker78)

Evidence of B field amplification: selfgenerated scattering enhances the energization rate (e.g., Bamba+05, Völk+05, Parizot+06, Morlino+12, Ressler+14, etc)

SN in NGC4526

Downstream Upstream

 $\frac{1}{2}$

DSA yields *momentum* power laws *f*(*p*) ∝ 4*πp*2*p*−*^q* The slope q depends only on the shock compression The CR pressure makes the adiabatic index γ smaller and induces a shock precursor Particles "feel" different compression ratios: spectra should become concave If acceleration is efficient, high-energy particles feel R_{tot} > 4 and their spectra must be flat, i.e., $q < 4$ $q =$ 3*R R* − 1 $; R =$ *γ* + 1 *γ* − 1 $\simeq 4;\rightarrow q=4$ for strong shocks

Non-Linear Diffusive Shock Acceleration

(e.g., Jones-Ellison91, Malkov-Drury01 for reviews)

Efficient DSA should return: Compression ratios $R > 4$; ${\sf CR}$ spectra flatter than p^{-4} (flatter than E^{-2} for relativistic particles) Observations, instead, point to significantly steeper spectra: Hadronic γ -rays from historical and middle-age SNRs: $q \sim 4.3$ – 4.7 (e.g., Caprioli11,12; Aharonian+19); Synchrotron emission from radio SNe: $q \sim$ 5 (e.g., Chevalier-Fransson06, Bell+11); Propagation of Galactic CRs suggests source spectra with $q \sim 4.3$ – 4.4 (e.g., Blasi-Amato11a,b; Evoli+19).

4

Astroplasmas from first principles

massless electrons for more macroscopical time/length scales \circledcirc

Full-PIC approach Define electromagnetic fields on a grid Move particles via Lorentz force Evolve fields via Maxwell equations Computationally very challenging! B

Hybrid approach: Fluid electrons - Kinetic protons (Winske & Omidi; Burgess et al., Lipatov 2002; Giacalone et al. 1993,1997,2004-2013; DC & Spitkovsky 2013-2015, Haggerty & DC 2019…)

5

B.

E

6

dHybridR code (+relativity; Haggerty-Caprioli19)

CR-driven Magnetic-Field Amplification

7

$$
n/n_0 \quad (t = 2\omega_c^{-1})
$$

$$
n^{4000}
$$

$$
x[c/\omega_p]
$$

$$
B_{tot} \quad (t = 2\omega_c^{-1})
$$

 $x[c/\omega_p]$

B amplification and ion acceleration where the shock is parallel

8

X-ray emission: red=thermal white=synchrotron

$F_{\rm eff}$ self-generated component of the initial field \sim which lies in the three panels of the three panels in the thr Caprioli-Spitkovsky14a,b,c

 $\mathbf{S}=\mathbf{S}=\mathbf{S}$ by the respective color color code in the shock position is matches by a plane of $\mathbf{S}=\mathbf{S}$ enhanced magnetic field, around α and magnetic field amplification is very different in the parallel case, where in the parallel case,

ϑ

 V_{sh}

 B_{0}

DSA Efficiency

Acceleration depends on the shock inclination

CR-modified Shocks: Enhanced compression!

Hybrid simulations (Haggerty-Caprioli20) Time (Ω_c^{-1}) 200 400 600 800 1000 Efficiency $\leq 15\%$ at parallel shocks $\frac{1}{2}$ Formation of upstream precursor 2 *R* increases with time, up to ~ 6 1000 2000 3000 4000 5000 6000 $X d_i$ $R\sim 6-7$ inferred in Tycho (Warren+05). In SN1006: $R\sim 4-7$, modulated with the azimuth/ shock inclination (Giuffrida+21) If $R \simeq 7 \rightarrow q_{\text{expected}} \simeq 3.5$ Chandra $\theta = 0^{\circ}$ Tycho: radio to *γ*-ray observations: sion ratio $q_{\text{inferred}} \simeq 4.3$

A challenge to DSA theory!

The Role of Amplified Magnetic Fields

 U pstream: $w_1 \simeq -v_{A,1}(\delta B_1) \ll u_1$

First evidence of the formation of a *postcursor* CRs *feel* a compression ratio *smaller* than the gas

$$
R_{cr} \simeq \frac{u_1}{u_2(1+\alpha)} < R_{gas}
$$

[®] B fields (and hence CRs) drift downstream with respect to the thermal gas

CRs feel $R_{cr} < R_{gas}$: the power-law index is *not universal, but depends on B field Ab-initio* explanation for the steep spectra observed in SNRs, radio SNe, CRs… Diesing-Caprioli21; See also R. Diesing's talk In a multi-wavelength fit B strength and particle slope are not independent!

=

 $R_{cr} - 1$

3*Rgas*

 $R_{gas}-1-\alpha$

Caprioli, Haggerty & Blasi 2020

 \bullet With the effective compression felt by CRs

 $> q_{DSA}$

A Revised Theory of Diffusive Shock Acceleration

 $q =$

 $3R_{cr}$

Oblique Shocks

- Oblique shocks are good accelerators but bad ion injectors (Jokipii82, Giacalone+00, Giacalone05, Caprioli+15)
- Is there a critical magnetization ($\propto 1/M_A^2$) below which ϑ becomes *irrelevant*?
	- No evidence in 2D hybrid sims w/o CR or B seeds

Sironi+11 found $M_A^* \geq 30$ for PIC relativistic shocks

A

 $\vartheta = 0$ $=60$ $\vartheta=80$ 10^3

Caprioli & Spitkovsky14a,b

Oblique Shocks: B-Field Amplification 2D/3D simulations of a shock with $M_A = 100$, $\theta_{Bn} = 80^{\circ}$ (Orusa & Caprioli 2023) = 80[∘] Magnetic field generation: 1D: simple compression (MHD) 2D out-of-plane B_0 : ~ compression 2D in-plane B_0 : $\delta B/B_0 \lesssim 40$ at the shock 3D: $\delta B/B_0 \lesssim 40$ at the shock, but also $\delta B/B_0 \gg 1$ upstream Dimensionality matters! Why? Turbulence is different in 3D…

Oblique Shocks: Ion Acceleration

Self-generated turbulence *solves the injection problem*!

back from downstream

Orusa & Caprioli 2023

Oblique Shocks: Shock Drift Acceleration

via shock drift acceleration

Implications for SNRs (e.g., SN1006)

Investigate dependence on θ_{Bn} and M_A (w. Orusa, Simon, in prog.) *Preliminary*: allows injection also for oblique shocks with 45[∘] < *θBn* < 65[∘] consistent with the compressions inferred in SN1006 (Giuffrida+21) SDA energy gain is limited ($\propto M_A$), then ions escape upstream They have hard time driving Bell instability, so no DSA See E. Simon's talk tomorrow

SDA is very fast: $E_{max} \propto t^2$ A v_{sh} ≃ 3,000 km/s can make ~GeV particles in ≲ 1 day Explains *azimuthally symmetric* radio emission from SN1006 But is intrinsically limited to relatively small *Emax*(*θBn*) Explains *lack* of X-ray synch and TeV emission

- S lope not universal! Steeper than E^{-2} , depends on B (Caprioli+20, Diesing & Caprioli 21) $\underline{\mathsf{O}\textrm{-perpendicular}}$: SDA efficient if $M_{A}\gtrsim30$; no injection problem (Orusa & Caprioli+20) → E^{-2} for $M_A \gtrsim 100$
	-
- Use shock acceleration theory to interpret SNR multi-wavelength emission!

TAKE-AWAY MESSAGES

Particle acceleration is generally efficient in SNR shocks Q-parallel: DSA is efficient (≥ 10%) Efficient *B* amplification via Bell's instability (Caprioli-Spitkovsky14a,b,c) E_{max} determined by the time it takes to grow B (Simon's talk, in prog.) Slope not universal! Steep, but $\rightarrow E^{-2}$ for Generally limited to $E_{max} \lesssim 10 \text{ GeV}$ (Orusa & Caprioli, in prog.)

