Platanias, Crete June 13, 2024

Particle Acceleration at SNR Shocks: Bridging Simulations and Observations

Damiano Caprioli University of Chicago

with C. Haggerty (UHawai'i), R. Diesing (IAS), L. Orusa (Princeton), P. Blasi (GSSI)

The SNR paradigm for the origin of CRs

Energetics: ~10% of SN kinetic energy can account for Galactic CRs (Baade-Zwicky34)

Mechanism: Fermi acceleration at SNR shocks is *first-order* and produces power-laws. Diffusive Shock Acceleration (DSA) (Krimskii77,Axford+78,Bell78,Blandford-Ostriker78)

© Evidence of B field amplification: selfgenerated scattering enhances the energization rate (e.g., Bamba+05, Völk+05, Parizot+06, Morlino+12, Ressler+14, etc)

Non-Linear Diffusive Shock Acceleration

- OSA yields momentum power laws $f(p) \propto 4\pi p^2 p^{-q}$
- \circ The slope q depends only on the shock compression

$$q = \frac{3R}{R-1}$$
; $R = \frac{\gamma+1}{\gamma-1} \simeq 4$; $\to q=4$ for strong shocks

- The CR pressure makes the adiabatic index γ smaller and induces a shock precursor
- Particles "feel" different compression ratios: spectra should become concave
- If acceleration is efficient, high-energy particles feel $R_{tot} > 4$ and their spectra must be flat, i.e., q < 4

Theory vs Observations

- Efficient DSA should return:
 - © Compression ratios R > 4;
 - \circ CR spectra flatter than p^{-4} (flatter than E^{-2} for relativistic particles)
- Observations, instead, point to significantly steeper spectra:
 - Begin Hadronic γ-rays from historical and middle-age SNRs: $q \sim 4.3 4.7$ (e.g., Caprioli11,12; Aharonian+19);
 - Synchrotron emission from radio SNe: $q \sim 5$ (e.g., Chevalier-Fransson06, Bell+11);
 - Propagation of Galactic CRs suggests source spectra with $q \sim 4.3 4.4$ (e.g., Blasi-Amato11a,b; Evoli+19).

Astroplasmas from first principles

Full-PIC approach

- Define electromagnetic fields on a grid
- Move particles via Lorentz force
- Evolve fields via Maxwell equations
- Computationally very challenging!

Hybrid approach: Fluid electrons - Kinetic protons

(Winske & Omidi; Burgess et al., Lipatov 2002; Giacalone et al. 1993,1997,2004-2013; DC & Spitkovsky 2013-2015, Haggerty & DC 2019...)

massless electrons for more macroscopical time/length scales

Hybrid Simulations of Collisionless Shocks

CR-driven Magnetic-Field Amplification

DSA Efficiency

Acceleration depends on the shock inclination

X-ray emission:
red=thermal
white=synchrotron

B amplification and ion acceleration where the shock is parallel

θ=45∘

CR-modified Shocks: Enhanced compression!

- Hybrid simulations (Haggerty-Caprioli20)
 - \bullet Efficiency $\lesssim 15\%$ at parallel shocks
 - Formation of upstream precursor

- - If $R \simeq 7 \to q_{\text{expected}} \simeq 3.5$
 - Tycho: radio to γ -ray observations:

$$q_{\rm inferred} \simeq 4.3$$

A challenge to DSA theory!

The Role of Amplified Magnetic Fields

- CRs feel an effective compression $R_{cr} = \frac{u_1 + w_1}{u_2 + w_2}$; $w = \text{wave speed} \approx v_A = \frac{B}{4\pi\rho}$
- We can measure both w and the effective CR speed $\langle v_{cr} \rangle$
 - Upstream: $w_1 \simeq -v_{A,1}(\delta B_1) \ll u_1$
 - O Downstream: $\langle v_{cr} \rangle \simeq w_2 \simeq + v_{A,2} (\delta B_2) \equiv \alpha u_2$

Haggerty-Caprioli20

 u_1

- B fields (and hence CRs) drift downstream with respect to the thermal gas
 - First evidence of the formation of a postcursor
 - © CRs feel a compression ratio smaller than the gas

$$R_{cr} \simeq \frac{u_1}{u_2(1+\alpha)} < R_{ga}$$

A Revised Theory of Diffusive Shock Acceleration

Caprioli, Haggerty & Blasi 2020

With the effective compression felt by CRs

$$q = \frac{3R_{cr}}{R_{cr} - 1} = \frac{3R_{gas}}{R_{gas} - 1 - \alpha} > q_{DSA}$$

- © CRs feel R_{cr} < R_{gas} : the power-law index is not universal, but depends on B field
- Ab-initio explanation for the steep spectra observed in SNRs, radio SNe, CRs...
 - Diesing-Caprioli21; See also R. Diesing's talk
- In a multi-wavelength fit B strength and particle slope are not independent!

Oblique Shocks

Grea. Vita excoentia excolatur

- Oblique shocks are good accelerators but bad ion injectors (Jokipii82, Giacalone+00, Giacalone05, Caprioli+15)
- Is there a critical magnetization ($\propto 1/M_A^2$) below which ϑ becomes irrelevant?
 - No evidence in 2D hybrid sims w/o CR or B seeds

Caprioli & Spitkovsky14a,b

Sironi+11 found $M_A^* \gtrsim 30$ for PIC relativistic shocks

Oblique Shocks: B-Field Amplification

 $ilde{\circ}$ 2D/3D simulations of a shock with $M_A = 100$, $\theta_{Bn} = 80^{\circ}$ (Orusa & Caprioli 2023)

 $\frac{40}{30}$ $\frac{60}{80}$ $\frac{30}{10}$ $\frac{60}{80}$ $\frac{30}{10}$ $\frac{30}{10}$ $\frac{60}{80}$ $\frac{30}{100}$ $\frac{30}{100}$

- Magnetic field generation:
 - 1D: simple compression (MHD)
 - 2D out-of-plane B_0 : ~ compression
 - 2D in-plane B_0 : $\delta B/B_0 ≤ 40$ at the shock
 - 3D: $\delta B/B_0 \lesssim 40$ at the shock, but also $\delta B/B_0 \gg 1$ upstream
- Dimensionality matters! Why?
 - Turbulence is different in 3D...

Oblique Shocks: Ion Acceleration

- Self-generated turbulence solves the injection problem!
- 3D geometry unlocks cross-field diffusion / B-field line wandering
 - Supra-thermal lons can diffuse back from downstream
 - and develop a non-thermal tail

Oblique Shocks: Shock Drift Acceleration

- Particle tracking reveals that ions gain energy via shock drift acceleration
 - Acceleration efficient ($\gtrsim 15\%$) and very fast!

- There is maximum energy achievable via SDA
- $oldsymbol{\circ}$ Slope and maximum energy depend on M_A Orusa & Caprioli 2023

Implications for SNRs (e.g., SN1006)

- Investigate dependence on θ_{Bn} and M_A (w. Orusa, Simon, in prog.)
- **Preliminary**: allows injection also for oblique shocks with $45^{\circ} < \theta_{Bn} < 65^{\circ}$
 - consistent with the compressions inferred in SN1006 (Giuffrida+21)
- \odot SDA energy gain is limited ($\propto M_A$), then ions escape upstream
- They have hard time driving Bell instability, so no DSA
 - See E. Simon's talk tomorrow

- SDA is very fast: $E_{max} \propto t^2$
 - \bullet A $v_{sh} \simeq 3{,}000$ km/s can make ~GeV particles in $\lesssim 1$ day
 - Explains azimuthally symmetric radio emission from SN1006
- lacktriangle But is intrinsically limited to relatively small $E_{max}(heta_{Bn})$
 - Explains lack of X-ray synch and TeV emission

TAKE-AWAY MESSAGES

- Particle acceleration is generally efficient in SNR shocks
- \odot Q-parallel: DSA is efficient ($\gtrsim 10\%$)
 - Efficient B amplification via Bell's instability (Caprioli-Spitkovsky14a,b,c)
 - ullet Slope not universal! Steeper than E^{-2} , depends on B (Caprioli+20, Diesing & Caprioli 21)
 - \bullet E_{max} determined by the time it takes to grow B (Simon's talk, in prog.)
- © Q-perpendicular: SDA efficient if $M_A \gtrsim 30$; no injection problem (Orusa & Caprioli+20)
 - \bullet Slope not universal! Steep, but $\to E^{-2}$ for $M_A \gtrsim 100$
 - © Generally limited to $E_{max} \lesssim 10~{\rm GeV}$ (Orusa & Caprioli, in prog.)
- Use shock acceleration theory to interpret SNR multi-wavelength emission!

