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s Sypernova Remnants AU

About 303 identified Galactic SNRs (Green’s catalog, 2022), most of them in the
direction of the Galactic Center region, affected by interstellar absorption.
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M Supernova Remnants FAU

About 303 identified Galactic SNRs (Green’s catalog, 2022), most of them in the
direction of the Galactic Center region, affected by interstellar absorption.

First extragalactic SNRs identified in the Magellanic Clouds in the 1960s and 1970s
in radio and optical observations.

Today’s number counts:
Distance (kpc) |Number of SNRs |References

LMC 59 (+15) Maggi et al. (2016), Bozzetto et al
(2017)

SMC 21 (+2) Badenes et al. (2010), Haberl et al.
(2012), Maggi et al. (2019)

M31 156 Sasaki et al. (2012), Lee & Lee
(2014)

M33 217 Long et al. (2010), White et al.
(2019)

M83 211 Blair et al. (2015), Long et al. (2022)

NGC 6946 185 Long et al. (2019, 2020), Koplitz et
al. (2021)
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M How to Find SNRs FAU

e Radio: Synchrotron emission from non-thermal electrons. Flux density S ~ v-2 with
about a =0.5.

e X-rays: Thermal plasma with continuum from free-free emission, recombination,
two-photon emission. Line emission from electron-ion collisions. Synchrotron
emission from non-thermal electrons.

e Optical: Radiative shocks in dense ISM. Optical forbidden lines from different

ionization states (e.g., [O Ill] AA 4959,5007, [O 1] AA 6300,6363, [N II] AA 6549,6583,
and [S I] AN 6717,6731).

e Infrared: Radiative shock, e.g., [Fe II] AN 1.27,1.64 pm. Dust emission.

e Gamma-rays: Radioactive decay, cosmic rays.
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A X-ray Emission of Hot Shocked Plasma EAU
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e SNRs and ISM Abundances FAU

ISM abundances measured in XMM-Newton spectrum of LMC SNRs.
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M SNRs and Stellar Populations FAU
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M= SNR Evolution FAU

Type la SNRs in the Large Magellanic Cloud
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SNR Morphologies
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Core-collapse SNRs in the Large Magellanic Cloud
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M Fe-rich Type la SNRs FAU

SNRs J0O506-7025 and J0527-7104 in the LMC (Kavanagh et al., 2016).

XMM-Newton EPIC (red: 0.3 - 0.7 keV, green: |MCELS (red: Ha, green: [S Il], blue: [O Ill]) with
0.7 -1.1 keV, blue: 1.1 - 4.2 keV) X-ray contours

XMM-Newton EPIC RGB with contours for [S  [Spitzer MIPS 24 um image with contours for [S
I1]/Ha > 0.67 I1]/Ha > 0.67
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Mzssn eROSITA LMC SNR Catalogue FAU

Hardness ratios HR; = (Bi:+1 - Bi)/(Bi+1 + Bi) for the count rates in the bands:
B1=0.3-0.7keV,B2=0.7-1.1keV,B3=1.1-2.3keV,B4=2.3-8.0keV
e Type la: hard in HR1 (> -0.2), soft in HR2 (< -0.3), Fe L emission dominates.
e Core-collapse: hard in HR1 (> -0.5), soft in HR3 (< -0.5), broader spectrum.

Secured CC Secured CC
likely CC . likely CC
Secured la Secured la
likely la ; likely la
Unclassified ' | Unclassified
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@ mmane. M31 =

XMM-Newton survey (Pietsch et al., 2005, Stiele et al., 2011)

Infrared & X-rays




Mz Northern Disk of M31 FAU

XMM-Newton, Chandra, and HST surveys
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@ mmane. M31 |"EAU

e Confirmed SNRs (yellow
and red)

e New confirmation using
LOFAR data (cyan)

e New XMM-Newton data of |
the Southern disk (Saeedi
et al., in prep.)
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@ mman. M33 =
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CHANDRA ACIS Survey of M33 (ChASeM33) JVLA radio survey: radio spectral
e Yellow: optical and X-ray detected SNRs index (White et al. 2019)
e Red: optical SNR candidates
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Q\? mment. M33 |n|§/A/%\\U

M33 SNR 21

» Resolved with Chandra, confirmed in the optical -
(red: Ha, green: [S 1], blue: [O 11l], Gaetz et al., e

2007). 42.0

e Spectral analysis with XMM-Newton (Garofali et
al. 2017)
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Mz Optical Line Ratios FAU

Typically, [S I1]/Ha to distinguish between shock-ionised and photoionised gas.

However, distinction between H Il regions and SNRs becomes less obvious at low
surface brightness (Long et al., 2018).




Mz Optical Line Ratios FAU

Typically, [S I1]/Ha to distinguish between shock-ionised and photoionised gas.
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High-resolution spectroscopy of objects in M33 or M51 shows that [S II]/Ha of SNRs
shows a gradient with the galactocentric distance, that of Hll regions does not.
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Mz Optical Line Ratios FAU

Typically, [S I1]/Ha to distinguish between shock-ionised and photoionised gas.
However, distinction between H Il regions and SNRs becomes less obvious at low
surface brightness (Long et al., 2018).

High-resolution spectroscopy of objects in M33 or M51 shows that [S II]/Ha of SNRs
shows a gradient with the galactocentric distance, that of Hll regions does not.

For identification of SNRs combination of radio, optical, and X-rays necessary!
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s Optical Line Ratios FAU

e [N ll]/Ha higher for large spiral galaxies
(M31, M51, M81, M83, NGC 6946) than i

_ ) NGC6946
for smaller star-forming galaxies (M33, M33

NGC4449 (this work)
NGC 4449).
e Depends on ISM metallicity.

[N 11] A6583 : Ha

[NI]6584:Ha

Winkler et al. (2023)

Long et al. (2018) N\
OR




s Number of Detections FAU

e Most of the SNRs in the Milky Way are detected in radio.

e SNRs in LMC and SMC
can be detected in X-
rays due to low
foreground absorption.

e High number of optical
SNRs in M31 and M33.

e X-ray and radio SNRs are
embedded in and are
often confused with HIl
regions in distant
galaxies.

Bozzetto et al. (2017)




M Luminosity Functions FAU

e Luminosity function of SNRs in SMC and LMC flatter than in M33 or M31.
e LMC hosts very bright SNRs.

e Difference due to lower metallicity and difference in ISM density.

e Luminosity function in general proportional to star-formation rate.
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Mz Questions to Be Answered FAU

e |s the number of SNRs consistent with predictions of models for stellar evolution,
supernova rate, and SNR evolution, taking into account the observational bias?

e What is the fraction and spatial distribution of core-collapse SNRs vs. type la
SNRs? What can we learn about the explosion mechanisms? What can we learn
about the environment?

e What is the luminosity function (LFs) of SNRs? How are the LFs of different
galaxies related to the underlying stellar population, ISM, metallicity and SNR
evolution?

e What is the distribution of SNRs in comparison to that of the colder phases of the
ISM? Are SNRs correlated with large structures in the ISM or with star-forming
regions? How many of the SNRs show correlations with molecular clouds?

e Can the SNR population explain the cosmic ray density in galaxies?




s Summary =AU

Observations of supernova remnants will tell us about:
e type of SN explosion and structure and abundances in the ejecta,

e temperature, ionization, density distributions, element abundances in the
surrounding interstellar medium,

e mass loss history of the progenitor,
e time since the explosion,

e presence or absence of a neutron star and its environment.
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absorption and distance.




s Summary =AU

Observations of supernova remnants will tell us about:
e type of SN explosion and structure and abundances in the ejecta,

e temperature, ionization, density distributions, element abundances in the
surrounding interstellar medium,

e mass loss history of the progenitor,
e time since the explosion,
e presence or absence of a neutron star and its environment.

Observed emission of SNRs also depends on external factors, especially on
absorption and distance.

SNR populations in other galaxies are not affected by these external factors and can
provide us with information about

e stellar evolution and supernova explosion mechanisms,
e interstellar medium, in particular, metallicity,
e stellar population,

e star-formation history.




