

A Radio Eye on Pulsar Wind Nebulae

SUPERNOVA REMNANTS III An Odyssey in Space after Stellar Death June 13, 2023

Roland Kothes

Dominion Radio Astrophysical Observatory Herzberg Astronomy and Astrophysics Research Centre National Research Council Canada

National Research Conseil national de Council Canada recherches Canada

Northern Radio Eyes

Northern Radio Eyes

Southern Radio Eyes

Southern Radio Eyes

Overview

Radio Eyes

- PWNe and their Evolution
- **Radio Spectra of PWNe**
- Magnetic Fields in PWNe
- >Outlook

Pulsars

>pulsating radio source > pulsation -> light house effect Created in a core-collapse supernova explosion \succ characterized by period P, typically between 1ms and **10s**

highly magnetized between 10⁸ and 10¹⁵ G

> pulsar produces a steady wind of magnetic field and relativistic particles > a wind termination shock is formed where the wind ram pressure balances the internal pressure of the PWN

> pulsar produces a steady wind of magnetic field and relativistic particles > a wind termination shock is formed where the wind ram pressure balances the internal pressure of the PWN relativistic particles are decelerated in the magnetic field producing synchrotron emission

Energy loss rate (spin down luminosity) is typically found between 10²⁸ and 4.5 x 10³⁸ erg/s \blacktriangleright More than 10³⁶ erg/s needed to produce a prominent radio PWN (Gotthelf, 2004)

 $\dot{E} = 10^{37} \text{ erg/s}$ $E_0 = 10^{51} \, \text{erg}$ $M_0 = 5 M_{\odot}$ $n_0 = 1 \text{ cm}^{-3}$ $v_{PSR} = 227 \text{ km/s}$

Crab Nebula

Image courtesy of NRAO and M. Bietenholz

Bietenholz (2006)

Ball et al., 2023:

G326.3-1.8

G327.1-1.1

PWN Evolution Kothes et al., 1998, 2020 CTB87 Pulsar: Qian-Cheng Liu et al. 2024

PWN Synchrotron Emission

e⁻ spectrum: $N(E)dE \sim E^{-\delta} dE$

N(E)dE: electrons in the energy range E:E+dE

flux density: $S_{\nu} \sim B_{\perp}^{\frac{1}{2}(\delta+1)} \nu^{-\frac{1}{2}(\delta-1)}$

B: magnetic field, ν : frequency, $\alpha := \frac{1}{2}(\delta - 1)$: spectral index

aging (Chevalier, 2000): $\nu_c[\text{GHz}] = 1.187 B^{-3}[\text{G}] t^{-2}[\text{yr}]$ ν_c : break frequency with $\Delta \alpha \approx 0.5$, t: age

Number of PWNe

Intrinsic Break: 3C58

Kothes et al., 2017

PWN Synchrotron Emission

e⁻ spectrum: $N(E)dE \sim E^{-\delta} dE$

N(E)dE: electrons in the energy range E:E+dE

flux density: $S_{\nu} \sim B_{\perp}^{\frac{1}{2}(\delta+1)} \nu^{-\frac{1}{2}(\delta-1)}$

B: magnetic field, ν : frequency, $\alpha := \frac{1}{2}(\delta - 1)$: spectral index

aging (Chevalier, 2000): $\nu_c[\text{GHz}] = 1.187 B^{-3}[\text{G}] t^{-2}[\text{yr}]$ ν_c : break frequency with $\Delta \alpha \approx 0.5$, t: age

Cooling Break: DA495

Kothes et al., 2008: *B* = 1.3 mG, Age = 20,000 years

Cooling Break: Boomerang

Kothes et al., 2006: *B* = 2.6 mG, Age = 3,900 years

Radio Polarimetry

Faraday Rotation

$$\phi_{\text{obs}} = \phi_0 + RM \lambda^2 \text{ [rad]}$$
$$RM = \frac{e^3}{2\pi m^2 c^4} \int_s n_e \vec{B} d\vec{s}$$
$$= 0.81 \int_s n_e B_{\parallel} ds \text{ [rad m}^{-2]}$$

 $\Delta \phi$: angle rotation e: electron charge m: electron mass c: vacuum speed of light s: pathlength along the line of sight n_e : electron density λ : wavelength

Faraday Rotation

Pulsar Wind

The wind emerges in a two-sided collimated outflow.
MHD simulations show that this results in a nebula elongated along the outflow (e.g. Van der Swaluw, 2003).

➤ The elongation in young PWNe is proposed to be the result of higher equatorial pressure associated with toroidal magnetic fields (e.g. Van der Swaluw, 2003).

Crab Nebula & 3C58

G21.5-0.9 Reich et al., 1998

Boomerang PWN Kothes et al., 2006

DA495 PWN Kothes et al., 2008

Magnetic Fields in PWNe

- We found toroidal and radial B-field structures.
- Radial B-field dominates the overall magnetic field, while the toroidal component is typically confined to the equatorial plane.
- More studies are necessary.

Outlook: ASKAP+MeerKAT

Outlook: RM Synthesis

Outlook: RM Synthesis

To separate foreground from internal rotation measure we use depolarization: see Poster S5.2, by Brianna Ball et al.

New PWN

New PWN

- Studies of pulsar wind nebulae in the radio waveband serve to probe the spectral and morphological distribution.
- PWNe typically have flat radio spectra with spectral indices α between 0.0 and 0.3, with few exceptions.
- Radio polarimetry is an excellent tool to study the magnetic field configuration in PWNe.
- ➢Observed magnetic fields in PWNe do not agree with those predicted by theoretical models. Radial B field dominates the overall magnetic field, while the toroidal component seems to be confined to the equatorial plane.
- >We are living in a golden era of radio astronomical research, I am glad to be part of this.