Toward understanding the progenitor channels to SNe Ibn/Icn: X-ray modeling of their SN-CSM interaction

Y. INOUE K. MAEDA

Kyoto University

2. X-ray light curve(LC) modeling

3. Parameter dependence of the X-ray LC

2. X-ray light curve(LC) modeling

3. Parameter dependence of the X-ray LC

The progenitor System of Type Ibn/Icn SuperNovae

Fig. Optical Spectra of interacting SNe (Gal-Yam+22)

```
width of narrow line = CSM velocity
(1000~3000 km/s)
```

The progenitor System of Type Ibn/Icn SuperNovae

 $\square Rapid decline \rightarrow Not {}^{56}Ni decay$

→ SN-CSM interaction. (steep CSM density distribution)

Optical light curve modeling (Previous studies)

SNe Ibn/Icn?

Optical light curve modeling (Previous studies)

SNe Ibn/Icn?

H We focused on X-ray emission from SNe Ibn/Icn.

Observational Data of X-ray

H We provide our X-ray light curve(LC) modeling, after that the model apply SN2006jc

2. X-ray light curve(LC) modeling

3. Parameter dependence of the X-ray LC

Method of X-ray light curve simulation for Type Ibn/Icn SNe

H Model in this study

① Calculate SN-CSM interaction in adiabatic hydrodynamics. (SNEC : 1D hydro code (Morozova et al. 2015))

Method of X-ray light curve simulation for Type Ibn/Icn SNe

H Model in this study

① Calculate SN-CSM interaction in adiabatic hydrodynamics. (SNEC : 1D hydro code (Morozova et al. 2015))

② For each mass grid, re-solve the time evolution of the internal energy as follows

$$\frac{dE_{th}}{dt} = \frac{dE_{ad,th}}{dt} - L_X$$
Radiative cooling
Adiabatic Expansion, Shock Heating (from 1)

Method of X-ray light curve simulation for Type Ibn/Icn SNe

H Model in this study

① Calculate SN-CSM interaction in adiabatic hydrodynamics. (SNEC : 1D hydro code (Morozova et al. 2015))

2 For each mass grid, re-solve the time evolution of the internal energy as follows

$$\frac{dE_{th}}{dt} = \frac{dE_{ad,th}}{dt} - L_X$$
Radiative cooling
Adiabatic Expansion, Shock Heating (from 1)

(3) Calculate X-ray emission (from (1)&(2))

 $L_X \propto \int \rho^2 T^{0.5} dV$ (free-free emission)

 $L_{X,obs} = L_X exp(-\tau)$ (photoelectric abs.; Compton scat.)

2. X-ray light curve(LC) modeling

3. Parameter dependence of the X-ray LC

	Peak day	Peak Luminosity
Hard X-ray	a few days	luminous
Soft X-ray	a few 10 days	faint

CSM abundance

CSM abundance

Physical properties $(E_{ei}, M_{ei}, \rho_{CSM})$

 H The combination of Hard & Soft X-ray LC is useful to determine the CSM and Ejecta properties.

 H Hard X-ray LC could determine the physical properties even during the rising phase of soft X-ray LC.

2. X-ray light curve(LC) modeling

3. Parameter dependence of the X-ray LC

X-ray LC model

fig. X-ray LC properties

	Optically thin phase for photoE. abs.	$E_{\rm ej}, M_{\rm ej}, ho_{ m CSM}$	CSM abundance
Hard X-ray LC	>~1 days	\bigcirc	×
Soft X-ray LC	>~10 days	Х	\bigcirc

• Broad band X-ray observation is needed for revealing SNe Ibn/Icn

<u>CSM abundance of SN2006jc</u> (X(He) : X(C) : X(O))=(0.2 : 0.4 : 0.4) by mass fraction **X**(He : C : O) ~ (0.5 : 0.3 : 0.2) by number fractio

Thank you for listening!