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     Can these SN properties be

explained by self-consistent

numerical simulations?



Si

Fe

O

Core-collapse Supernovae
in a Nutshell

● Onion-shell-like structure
● Stellar radius: ~108-109 km
● Iron (Fe) core: ~103 km



Si

O

Core-collapse Supernovae
in a Nutshell

● Onion-shell-like structure
● Stellar radius: ~108-109 km
● Iron (Fe) core: ~103 km

● Fe core collapses to a 
Proto-Neutron Star (PNS)

● Core bounce launches a 
shock wave (stagnates)



Si

O

Core-collapse Supernovae
in a Nutshell

● Onion-shell-like structure
● Stellar radius: ~108-109 km
● Iron (Fe) core: ~103 km

● Fe core collapses to a 
Proto-Neutron Star (PNS)

● Core bounce launches a 
shock wave (stagnates)

● Shock revival by neutrino 
energy deposition



Neutrino-driven Explosion Mechanism

● Gravitational binding energy of the collapsed Fe core
(~3–4 x 1053 erg) transiently stored in a hot and inflated PNS

● PNS contracts and cools via neutrino emission over ~10 s
● ~1% of neutrinos reabsorbed (in “gain layer” / heating layer)
● Shock revival (aided by fluid instabilities: convection & SASI)

Arnett (1966)
Colgate & White (1966)
Bethe & Wilson (1985)



Status & Open Questions

● Complex interplay of stellar hydrodynamics and neutrino radiative 
transfer > numerical simulations (in full-3D geometry) required

● Successful shock revival by neutrino heating achieved in
self-consistent 3D simulations by various groups

● However: Simulations typically until less than ~1 s due to high 
computational demands of neutrino-transport calculations

● Much too short for converged explosion properties!
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>> Can the neutrino-driven mechanism explain the properties of
     observed CCSNe (explosion energies, 56Ni yields, NS kicks) ??



Goal: “Long-time” 3D simulations over several seconds until
     convergence of the explosion properties

Approach:

Continue a set of fully self-consistent 3D CCSN models 
(simulated with the Prometheus-Vertex code) for several 
seconds by means of a newly implemented (computationally 
efficient) approximate scheme for neutrino effects (NEMESIS)

Prometheus-Vertex: Fryxell et al. (1989), Rampp & Janka (2002), Buras et al. (2006),
 Marek et al. (2006), Hanke (2014), Melson (2016), Bollig (2018)



NEMESIS neutrino scheme

> neutrino cooling / neutrino heating
> transfer of electron lepton number
> pressure support inside the PNS

> time evolution of the
   neutrino effects guided
   by 1D PNS-cooling 
   simulations with 
   Prometheus-Vertex

> smoothly extends the
   evolution of the 3D
   Prometheus-Vertex
   models with full
   neutrino transport



Model overview

● 8 successfully exploding CCSN models > until ~10 s
● 6 black hole forming models (failed SNe) > until ~1 s



Progenitor Models

Woosley & Heger (2007, 2015), Heger (2012), Heger et al. 
(2005), Sukhbold et al. (2018), Yadav et al. (2020, 2023)

> density profile outside of Fe core determines
   the mass accretion rate onto the PNS !!
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Low-mass Progenitors > explode rather “easily”
> explode quite spherical
> low mass accretion rate(~9–10 M☉)
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Explosion Energies

Explosion energies 
only start to build up !!
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   Values of ~0.05–1.4 B

   in excellent agreement

   with observations !!



Nucleosynthesis Yields
(for model s18.88)

Sieverding, Kresse, & Janka 
(2023), ApJL, 957, L25,

arXiv:2308.09659

Efficient production of 
44Ti due to non-monotonic 
temperature / density 
history of the ejecta!

Significant enhancement 
of Ti / Fe yield compared 
to 1D models!!

   M(56Ni) = 6.4 x 10–2 M☉

   M(44Ti) = 8.1 x 10–5 M☉



Neutron Star Kicks

NS acceleration via:

1) asymmetric ejection of matter (“hydro kick”)
2) asymmetric neutrino emission (“neutrino kick”)

Janka & Kresse (2024)
arXiv:2401.13817

Scheck et al. (2006)
Asymmetric ejection of matter causes a NS kick in 
the direction opposite to the strongest expansion



Neutron Star Kicks

Janka & Kresse (2024)
arXiv:2401.13817

    NS kick velocities

    of ~(50–1300) km/s

NS acceleration via:

1) asymmetric ejection of matter (“hydro kick”)
2) asymmetric neutrino emission (“neutrino kick”)



Neutron Star Kicks

 hydro kick of more    
 than ~1000 km/s

NS acceleration via:

1) asymmetric ejection of matter (“hydro kick”)
2) asymmetric neutrino emission (“neutrino kick”)



Ejecta asymmetry matters!



Ejecta asymmetry matters!



Hydro Kicks

> small hydro kicks below ~30 km/s for low-mass progenitors

> large hydro kicks of up to more than ~1000 km/s
   for more massive progenitors (depending on the
   ejecta asymmetry and explosion energy)



Neutron Star Kicks

Janka & Kresse (2024)
arXiv:2401.13817

neutrino kick of
~50–200 km/s

NS acceleration via:

1) asymmetric ejection of matter (“hydro kick”)
2) asymmetric neutrino emission (“neutrino kick”)



Neutrino-induced Kicks

ν kicks of
~50 km/s

Reasons for asymmetric (anisotropic) neutrino emission:

1) Anisotropic neutrino emission
from the PNS core (due to the LESA)

ν kicks of up
to ~200 km/s

2a) Anisotropic neutrino (ν) emission
from the PNS accretion mantle layer

2b) Anisotropic ν absorption/scattering
in dense matter downdrafts
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Neutrino Kicks

> neutrino-induced NS kicks: ~50–200 km/s

> neutrino-induced BH kicks: ~few km/s
   (in failed SNe without asymmetric mass ejection)

   high kicks O(100 km/s)

   expected for BHs from

   fallback SNe / BH SNe



NS and BH Kicks Janka & Kresse (2024)
arXiv:2401.13817
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    Vigna-Gómez+2024,

    PRL 132, 191403



● Explosion energy: ~(0.1–1.5) x 1051 erg

● Radioactive 56Ni:  ~(0.01–0.1) M☉

Radioactive 44Ti:  ~10–4 M☉

● NS kick velocity:  ~(100–1000) km/s 

>  Kresse et al. (2024, in prep.)
>  Janka & Kresse (2024)
>  Sieverding, Kresse, & Janka (2023)
>  Bollig, Yadav, Kresse, et al. (2021)
>  Stockinger, Janka, Kresse et al. (2020)
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