Daniel Kresse

SNRIII conference, 2024-06-11

<u>Collaborators:</u> Thomas Janka, Robert Bollig, Tobias Melson, Alexander Summa, Bernhard Müller, Naveen Yadav

MAX PLANCK INSTITUTE

arXiv:2401.13817

FOR ASTROPHYSICS

Characteristic properties of Core-collapse Supernovae

- Explosion energy: ~(0.1–1.5) x 10⁵¹ erg
- Radioactive ⁵⁶Ni: ~(0.01-0.1) M_☉ Radioactive ⁴⁴Ti: ~10⁻⁴ M_☉
- NS kick velocity: ~(100–1000) km/s

Pejcha & Prieto (2015) Martinez et al. (2022) Iyudin et al. (1994) Weinberger et al. (2020) Grefenstette et al. (2014) Hobbs et al. (2005) Faucher-Giguère & Kaspi (2006)

Hobbs+2005

Characteristic properties of Core-collapse Supernovae

- Explosion energy: ~(0.1–1.5) x 10⁵¹ erg
- Radioactive ⁵⁶Ni: ~(0.01–0.1) M_☉ Radioactive ⁴⁴Ti: ~10⁻⁴ M_☉
- NS kick velocity: ~(100–1000) km/s

Pejcha & Prieto (2015) Martinez et al. (2022) Iyudin et al. (1994) Weinberger et al. (2020) Grefenstette et al. (2014) Hobbs et al. (2005) Faucher-Giguère & Kaspi (2006)

Can these SN properties be explained by self-consistent numerical simulations?

Core-collapse Supernovae in a Nutshell

- Onion-shell-like structure
- Stellar radius: ~10⁸-10⁹ km
- Iron (Fe) core: ~10³ km

Core-collapse Supernovae in a Nutshell

- Onion-shell-like structure
- Stellar radius: ~10⁸-10⁹ km
- Iron (Fe) core: ~10³ km
- Fe core collapses to a Proto-Neutron Star (PNS)
- Core bounce launches a shock wave (stagnates)

Core-collapse Supernovae in a Nutshell

- Onion-shell-like structure
- Stellar radius: ~10⁸-10⁹ km
- Iron (Fe) core: ~10³ km
- Fe core collapses to a Proto-Neutron Star (PNS)
- Core bounce launches a shock wave (stagnates)

 Shock revival by neutrino energy deposition

Neutrino-driven Explosion Mechanism

- Gravitational binding energy of the collapsed Fe core (~3–4 x 10⁵³ erg) transiently stored in a hot and inflated PNS
- PNS contracts and cools via neutrino emission over ~10 s
- ~1% of neutrinos reabsorbed (in "gain layer" / heating layer)
- Shock revival (aided by fluid instabilities: convection & SASI)

Status & Open Questions

- Complex interplay of stellar hydrodynamics and neutrino radiative transfer > numerical simulations (in full-3D geometry) required
- Successful shock revival by neutrino heating achieved in self-consistent 3D simulations by various groups
- However: Simulations typically until less than ~1 s due to high computational demands of neutrino-transport calculations
- Much too short for converged explosion properties!

Status & Open Questions

- Complex interplay of stellar hydrodynamics and neutrino radiative transfer > numerical simulations (in full-3D geometry) required
- Successful shock revival by neutrino heating achieved in self-consistent 3D simulations by various groups
- However: Simulations typically until less than ~1 s due to high computational demands of neutrino-transport calculations
- Much too short for converged explosion properties!

>> Can the neutrino-driven mechanism explain the properties of observed CCSNe (explosion energies, ⁵⁶Ni yields, NS kicks) ??

<u>Goal:</u> "Long-time" 3D simulations <u>over several seconds</u> until convergence of the explosion properties

Continue a set of fully self-consistent 3D CCSN models (simulated with the Prometheus-Vertex code) for several seconds by means of a newly implemented (computationally efficient) approximate scheme for neutrino effects (NEMESIS)

Prometheus-Vertex: Fryxell et al. (1989), Rampp & Janka (2002), Buras et al. (2006), Marek et al. (2006), Hanke (2014), Melson (2016), Bollig (2018)

NEMESIS neutrino scheme

Model overview

Model	$M_{\rm ZAMS}$	$M_{\rm prec}$	$M_{\rm He}$		$\xi_{2.5}$ Progenitor E		EoS	Grid	N_r	Refs.
	[M _☉]	[M _☉]	[M _☉]	$[\mathbf{Z}_{\odot}]$		Dim./Rot.		early/late		
s9.0	9.00	8.75	1.57	1	0.00004	1D, non-rot.	LS220	$YY-SMR/2^{\circ}$	400 - 626	[1], [9, 17]
z9.6	9.60	9.60	1.70	0	0.00008	1D, non-rot.	LS220	$YY-2^{\circ}$	400 - 700	[2], [10, 17]
s12.28	12.28	11.13	3.29	1	0.03167	3D, non-rot.	SFHo	$YY-3.5^{\circ}$	550 - 729	[3,4],[11,18]
m15	15.00	11.23	4.77	1	0.10602	1D, rot.*	LS220	$YY-2^{\circ}$	400 - 800	[5], [12, 18]
m15e	"	"	"	"	"	"	LS220	$YY-2^{\circ}$	400 - 800	[5], [12, 18]
s18.88	18.88	14.34	5.79	1	0.28335	3D, non-rot.	LS220	$YY-2^{\circ}$	550 - 730	[6], [13, 18]
s20	20.00	15.93	6.33	1	0.28462	1D, non-rot.	LS220	$SP/YY-2^{\circ}$	400 - 750	[7], [14, 18]
s20e	"	"	"	"	"	"	LS220	$SP/YY-2^{\circ}$	400 - 740	[7], [14, 18]
s40	40.00	15.34	15.34	1	0.54399	1D, non-rot.	LS220	YY-5°	400-667	[7],[15,16,18]
$u75_DD2$	75.00	74.05	54.84	10^{-4}	0.88157	1D, non-rot.	DD2	$YY-5^{\circ}$	400 - 646	[8], [15, 18]
$u75_{LS220_{1}}$	"	"	"	"	"	"	LS220	$YY-5^{\circ}$	400 - 562	[8], [15, 18]
$u75_{LS220_{2}}$	"	"	"	"	"	"	LS220	$YY-5^{\circ}$	400 - 562	[8], [15, 18]
u75_LS220_hr	"	"	"	"	"	"	LS220	YY-SMR	400 - 573	[8], [15, 16, 18]
$u75_SFHo$	"	"	"	"	"	"	SFHo	$YY-5^{\circ}$	400 - 706	[8],[15,18]

 Table 1
 Overview of investigated models: progenitor properties and setups of 3D CCSN simulations

- 8 successfully exploding CCSN models
- 6 black hole forming models (failed SNe)

> until ~10 s > until ~1 s

Progenitor Models

2				
Model	$M_{\rm ZAMS}$	$M_{ m prec}$	$M_{\rm He}$	Z
	$[{\rm M}_{\odot}]$	$[{\rm M}_{\odot}]$	$[{\rm M}_{\odot}]$	$[\mathrm{Z}_{\odot}]$
s9.0	9.00	8.75	1.57	1
z9.6	9.60	9.60	1.70	0
s12.28	12.28	11.13	3.29	1
m15	15.00	11.23	4.77	1
s18.88	18.88	14.34	5.79	1
s20	20.00	15.93	6.33	1

Woosley & Heger (2007, 2015), Heger (2012), Heger et al. (2005), Sukhbold et al. (2018), Yadav et al. (2020, 2023)

> density profile outside of Fe core determines the mass accretion rate onto the PNS !!

Progenitor Models

Model	$M_{\rm ZAMS}$	$M_{\rm prec}$	$M_{\rm He}$	Z
	$[{\rm M}_{\odot}]$	$[{\rm M}_{\odot}]$	$[{\rm M}_{\odot}]$	$[\mathrm{Z}_{\odot}]$
s9.0	9.00	8.75	1.57	1
z9.6	9.60	9.60	1.70	0
s12.28	12.28	11.13	3.29	1
m15	15.00	11.23	4.77	1
s18.88	18.88	14.34	5.79	1
s20	20.00	15.93	6.33	1

Woosley & Heger (2007, 2015), Heger (2012), Heger et al. (2005), Sukhbold et al. (2018), Yadav et al. (2020, 2023)

> density profile outside of Fe core determines the mass accretion rate onto the PNS !!

Onset of the Explosions

Onset of the Explosions

Low-mass Progenitors (~9–10 M_o)

> explode rather "easily"> explode quite spherical> low mass accretion rate

Onset of the Explosions

High-mass Progenitors (~19-20 M₀)

 > explode more delayed
 > explode highly asymmetric
 > high mass accretion rate, persistent downflows

High-mass Progenitors (~19-20 M₀)

 > explode more delayed
 > explode highly asymmetric
 > high mass accretion rate, persistent downflows

Explosion Energies

Explosion Energies

Explosion energies grow over several seconds due to:

 continued neutrino-energy deposition ("heating")
 supply of fresh matter close to the PNS (long-lasting "downflows" that are re-ejected)

Explosion Energies

Explosion energies grow over several seconds due to:

 continued neutrino-energy deposition ("heating")
 supply of fresh matter close to the PNS (long-lasting "downflows" that are re-ejected)

Nucleosynthesis Yields

(for model s18.88)

M(⁵⁶Ni) = 6.4 x 10⁻² M_☉ M(⁴⁴Ti) = 8.1 x 10⁻⁵ M_☉

Sieverding, Kresse, & Janka (2023), ApJL, 957, L25, arXiv:2308.09659

Efficient production of ⁴⁴Ti due to non-monotonic temperature / density history of the ejecta!

Significant enhancement of Ti / Fe yield compared to 1D models!!

NS acceleration via:

asymmetric ejection of matter ("hydro kick")
 asymmetric neutrino emission ("neutrino kick")

Janka & Kresse (2024) arXiv:2401.13817

Asymmetric ejection of matter causes a NS kick in the direction opposite to the strongest expansion

Scheck et al. (2006)

time [s]

Ejecta asymmetry matters!

 $v_{\rm NS}^{\rm hyd} \propto \bar{\alpha}_{\rm ej} E_{\rm exp}$

Ejecta asymmetry matters!

 $v_{\rm NS}^{\rm hyd} \propto \bar{\alpha}_{\rm ej} \, E_{\rm exp}$

Hydro Kicks

 $\nu_{\rm NS}^{\rm hyd} \propto \bar{\alpha}_{\rm ej} E_{\rm exp}$

Table 2 Hydrodynamic PNS kicks and explosion energies of 3D SN models

Model	$t_{\rm f}^{ u}$ [s]	$t_{\rm f}$ [s]	$M_{ m NS,b}^{ m f}$ [M $_{\odot}$]	$M_{ m NS,g}^{ m f}$ [M $_{\odot}$]	$M^{\infty}_{\mathrm{NS},\mathrm{g}}$ $[\mathrm{M}_{\odot}]$	$v_{ m NS}^{ m hyd} \ [m km/s]$	$v_{ m NS}^{ u}$ [km/s]	$v_{\rm NS}^{\rm tot}$ $[\rm km/s]$	$ar{lpha}_{ m ej}$	$ heta_{ m hyd}^{ u,{ m f}}$	$ heta_{ m spin}^{ m kick}$ [°]	$P_{\rm NS}$ [ms]	$E_{\exp}^{\operatorname{diag}}$ [B]	$E_{\mathrm{exp}}^{\mathrm{OB}-}$ [B]
0.0	0.400	2.020	1.955	1.055	1.040	20.4		[/~]	0.005		195 4	1 5 1 0	0.051	0.050
s9.0	0.488	3.936	1.355	1.255	1.240	30.4	44.4	57.0	0.095	82.4	135.4	1,518	0.054	0.052
z9.6	0.450	1.450	1.350	1.290	1.237	10.4	49.4	59.6	0.039	12.1	140.7	1,715	0.086	0.086
s12.28	4.139	4.139	1.551	1.429	1.402	243.1	138.6	301.5	0.173	79.3	70.8	7.5	0.228	0.190
m15	0.457	7.433	1.605	1.427	1.416	627.0	54.4	621.1	0.196	98.8	80.4	2.1	0.332	0.281
m15e	0.457	8.002	1.583	1.405	1.396	561.6	54.4	549.0	0.147	106.1	60.9	2.1	0.436	0.394
s18.88	1.675	8.360	1.878	1.657	1.652	462.3	95.7	506.5	0.074	67.7	145.1	7.8	1.000	0.938
s20	0.506	8.038	1.949	1.698	1.690	1291.5	55.0	1305.5	0.167	76.4	89.9	36.3	1.229	1.157
s20e	0.506	7.980	1.912	1.663	1.655	878.5	55.0	918.8	0.100	44.2	48.7	316.1	1.431	1.361

- > <u>small hydro kicks</u> below ~30 km/s for <u>low-mass progenitors</u>
- > large hydro kicks of up to more than ~1000 km/s for more massive progenitors (depending on the ejecta asymmetry and explosion energy)

Neutrino-induced Kicks

Reasons for asymmetric (anisotropic) neutrino emission:

1) Anisotropic neutrino emission from the <u>PNS core</u> (due to the LESA)

2a) Anisotropic neutrino (ν) <u>emission</u> from the PNS accretion mantle layer

2b) Anisotropic v <u>absorption/scattering</u> in dense matter downdrafts

Neutrino Kicks

$$v_{\rm NS}^{\nu} \approx 167 \, \frac{\rm km}{\rm s} \, \frac{\bar{\alpha}_{\nu}^{\rm tot}}{0.005} \, \frac{E_{\nu}^{\rm tot}}{3 \times 10^{53} \, {\rm erg}} \left(\frac{M_{\rm NS,b}}{1.5 \, {\rm M}_{\odot}}\right)^{-1}$$

Table 6 Neutrino-induced PNS kicks and characteristic parameters at time $t_{\rm f}^{\nu}$ for exploding and BH forming 3D models

Model	$t_{ m f}^{ u}$ [s]	$M_{\rm NS,b}$ [M $_{\odot}$]	$M_{\rm NS,g}$ [M $_{\odot}$]	$E_{\nu}^{\rm tot}$ [10 ² B]	$\bar{\alpha}_{\nu_e}$ [%]	$\bar{\alpha}_{\bar{\nu}_e}$ [%]	$\bar{\alpha}_{\nu_x}$ [%]	$\bar{\alpha}_{\nu}^{\mathrm{tot}}$ [%]	$v_{\rm NS}^{\nu}$ [km/s]	$v_{\rm NS}^{\rm LESA}$ $[\rm km/s]$	$ heta_{ m hyd}^{ u}$ [°]	$ ilde{v}_{ m NS}^{ u,\infty}$ [km/s]	$ ilde{v}_{ m BH,1}^{ u,\infty}$ [km/s]	$\tilde{v}_{\mathrm{BH,2}}^{ u,\infty}$ [km/s]
s9.0 z9.6 s12.28 m15 s18.88 s20	$\begin{array}{c} 0.488\\ 0.450\\ 4.139\\ 0.457\\ 1.675\\ 0.506\end{array}$	$ \begin{array}{r} 1.355 \\ 1.350 \\ 1.551 \\ 1.575 \\ 1.878 \\ 1.901 \\ \end{array} $	$ \begin{array}{r} 1.320 \\ 1.319 \\ 1.429 \\ 1.533 \\ 1.751 \\ 1.828 \\ \end{array} $	$\begin{array}{c} 0.617\\ 0.556\\ 2.184\\ 0.744\\ 2.271\\ 1.310\end{array}$	$ \begin{array}{r} 1.73 \\ 2.06 \\ 2.09 \\ 0.11 \\ 0.56 \\ 0.82 \\ \end{array} $	$\begin{array}{c} 3.12 \\ 3.81 \\ 0.22 \\ 0.25 \\ 0.57 \\ 1.53 \end{array}$	$\begin{array}{c} 0.66\\ 0.84\\ 0.43\\ 1.10\\ 0.47\\ 0.57\end{array}$	$\begin{array}{c} 0.60\\ 0.76\\ 0.55\\ 0.70\\ 0.45\\ 0.46\end{array}$	$ \begin{array}{c} 44.4 \\ 49.4 \\ 138.6 \\ 54.4 \\ 95.7 \\ 55.0 \\ \end{array} $	$ \begin{array}{r} 47.0 \\ 42.0 \\ 50.1 \\ 11.4 \\ 35.4 \\ 58.7 \end{array} $	76.7 9.8 79.2 48.9 10.1 60.3	67 ± 11 78 ± 14 170.0 264.3 173.6 197.8		
s40 u75_DD2 u75_LS220_1 u75_LS220_2 u75_LS220_hr u75_SFHo	$\begin{array}{c} 0.572 \\ 0.519 \\ 0.250 \\ 0.248 \\ 0.254 \\ 0.325 \end{array}$	$2.381 \\ 2.889 \\ 2.572 \\ 2.573 \\ 2.563 \\ 2.623$	$2.257 \\ 2.743 \\ 2.493 \\ 2.494 \\ 2.484 \\ 2.529$	$2.210 \\ 2.616 \\ 1.418 \\ 1.397 \\ 1.425 \\ 1.696$	$\begin{array}{c} 0.14\\ 0.21\\ 0.15\\ 0.13\\ 0.14\\ 0.36\end{array}$	$\begin{array}{c} 0.30 \\ 0.39 \\ 0.14 \\ 0.23 \\ 0.31 \\ 0.25 \end{array}$	$\begin{array}{c} 0.16\\ 0.18\\ 0.07\\ 0.12\\ 0.12\\ 0.20\\ \end{array}$	$\begin{array}{c} 0.13 \\ 0.15 \\ 0.05 \\ 0.13 \\ 0.12 \\ 0.09 \end{array}$	$22.0 \\ 26.7 \\ 4.8 \\ 11.6 \\ 11.4 \\ 10.2$	$ 19.2 \\ 18.0 \\ 6.9 \\ 5.4 \\ 7.1 \\ 16.9 $	150.0 118.6 115.3 102.1 87.2 113.7		$\begin{array}{c} 3.27 \\ 0.99 \\ 0.16 \\ 0.39 \\ 0.38 \\ 0.35 \end{array}$	$\begin{array}{c} 3.27 \\ 1.34 \\ 0.22 \\ 0.53 \\ 0.52 \\ 0.47 \end{array}$

> neutrino-induced NS kicks: ~50–200 km/s

Neutrino Kicks

$$v_{\rm NS}^{\nu} \approx 167 \, \frac{\rm km}{\rm s} \, \frac{\bar{\alpha}_{\nu}^{\rm tot}}{0.005} \, \frac{E_{\nu}^{\rm tot}}{3 \times 10^{53} \, {\rm erg}} \left(\frac{M_{\rm NS,b}}{1.5 \, {\rm M}_{\odot}}\right)^{-1}$$

Table 6 Neutrino-induced PNS kicks and characteristic parameters at time $t_{\rm f}^{\nu}$ for exploding and BH forming 3D models

Model	$t_{ m f}^{ u}$ [s]	$M_{ m NS,b}$ [M $_{\odot}$]	$M_{\rm NS,g}$ [M $_{\odot}$]	$E_{\nu}^{\rm tot}$ $[10^2 \mathrm{B}]$	$\bar{\alpha}_{\nu_e}$ [%]	$\bar{\alpha}_{\bar{\nu}_e}$ [%]	$\bar{\alpha}_{\nu_x}$ [%]	$\bar{\alpha}_{\nu}^{\mathrm{tot}}$ [%]	$\frac{v_{\rm NS}^{\nu}}{\rm [km/s]}$	$v_{\rm NS}^{\rm LESA}$ [km/s]	$ heta_{ m hyd}^{ u} \ [^{\circ}]$	$\tilde{v}_{ m NS}^{ u,\infty}$ [km/s]	$\tilde{v}_{\mathrm{BH},1}^{ u,\infty}$ [km/s]	$\tilde{v}_{\mathrm{BH,2}}^{ u,\infty}$ [km/s]
s9.0	0.488	1.355	1.320	0.617	1.73	3.12	0.66	0.60	44.4	47.0	76.7	67 ± 11		
z9.6 s12.28	$0.450 \\ 4.139$	$\frac{1.350}{1.551}$	$1.319 \\ 1.429$	$\begin{array}{c} 0.556 \\ 2.184 \end{array}$	$2.06 \\ 2.09$	0.22	$\begin{array}{c} 0.84 \\ 0.43 \end{array}$	$\begin{array}{c} 0.76 \\ 0.55 \end{array}$	$49.4 \\ 138.6$	$\begin{array}{c} 42.0\\ 50.1 \end{array}$	$9.8 \\ 79.2$	78 ± 14 170.0		
m15	0.457	1.575	1.533	0.744	0.11	0.25	1.10	0.70	54.4	11.4	48.9	264.3		
s18.88 s20	$\begin{array}{c} 1.675\\ 0.506 \end{array}$	1.878 1.901	1.751 1.828	2.271 1.310	$0.50 \\ 0.82$	1.57	$\begin{array}{c} 0.47\\ 0.57\end{array}$	$\begin{array}{c} 0.45\\ 0.46\end{array}$	$\begin{array}{c} 95.7 \\ 55.0 \end{array}$	$\frac{35.4}{58.7}$	$10.1 \\ 60.3$	173.0 197.8		
s40	0.572	2.381	2.257	2.210	0.14	0.30	0.16	0.13	22.0	19.2	150.0		3.27	3.27
u75_DD2 u75_LS220_1	$\begin{array}{c} 0.519 \\ 0.250 \end{array}$	$\begin{array}{c} 2.889 \\ 2.572 \end{array}$	$2.743 \\ 2.493$	$\begin{array}{c} 2.616 \\ 1.418 \end{array}$	$\begin{array}{c} 0.21 \\ 0.15 \end{array}$	$\begin{array}{c} 0.39 \\ 0.14 \end{array}$	$\begin{array}{c} 0.18\\ 0.07\end{array}$	$\begin{array}{c} 0.15 \\ 0.05 \end{array}$	$26.7 \\ 4.8$	$\begin{array}{c} 18.0 \\ 6.9 \end{array}$	$\begin{array}{c} 118.6\\ 115.3 \end{array}$		$\begin{array}{c} 0.99 \\ 0.16 \end{array}$	$\begin{array}{c} 1.34 \\ 0.22 \end{array}$
u75_LS220_2	0.248	2.573	2.494	1.397	0.13	0.23	0.12	0.13	11.6	5.4	102.1		0.39	0.53
u75_LS220_hr u75_SFHo	$\begin{array}{c} 0.254 \\ 0.325 \end{array}$	$2.563 \\ 2.623$	$2.484 \\ 2.529$	$1.425 \\ 1.696$	$\begin{array}{c} 0.14 \\ 0.36 \end{array}$	$\begin{array}{c} 0.31 \\ 0.25 \end{array}$	$\begin{array}{c} 0.12\\ 0.20 \end{array}$	$\begin{array}{c} 0.12\\ 0.09 \end{array}$	$\begin{array}{c} 11.4 \\ 10.2 \end{array}$	$\begin{array}{c} 7.1 \\ 16.9 \end{array}$	$87.2 \\ 113.7$		$\begin{array}{c} 0.38\\ 0.35\end{array}$	$\begin{array}{c} 0.52 \\ 0.47 \end{array}$

> neutrino-induced NS kicks: ~50–200 km/s

> neutrino-induced BH kicks: ~few km/s (in failed SNe without asymmetric mass ejection)

Neutrino Kicks

$$v_{\rm NS}^{\nu} \approx 167 \, \frac{\rm km}{\rm s} \, \frac{\bar{\alpha}_{\nu}^{\rm tot}}{0.005} \, \frac{E_{\nu}^{\rm tot}}{3 \times 10^{53} \, {\rm erg}} \left(\frac{M_{\rm NS,b}}{1.5 \, {\rm M}_{\odot}}\right)^{-1}$$

Table 6 Neutrino-induced PNS kicks and characteristic parameters at time $t_{\rm f}^{\nu}$ for exploding and BH forming 3D models

Model	$t_{ m f}^{ u}$ [s]	$M_{\rm NS,b}$ [M _{\odot}]	$M_{\rm NS,g}$ [M _{\odot}]	E_{ν}^{tot} [10 ² B]	$\bar{\alpha}_{\nu_e}$ [%]	$\bar{\alpha}_{\bar{\nu}_e}$ [%]	$\bar{\alpha}_{\nu_x}$ [%]	$\bar{\alpha}_{\nu}^{\mathrm{tot}}$ [%]	$v_{ m NS}^{ u}$ [km/s]	$v_{\rm NS}^{\rm LESA}$ $[\rm km/s]$	$ heta_{ m hyd}^{ u} \ [^{\circ}]$	$ ilde{v}_{ m NS}^{ u,\infty}$ [km/s]	$ ilde{v}^{ u,\infty}_{ m BH,1}$ [km/s]	$\tilde{v}_{\rm BH,2}^{ u,\infty}$ [km/s]
s9.0	0.488	1.355	1.320	0.617	1.73	3.12	0.66	0.60	44.4	47.0	76.7	67 ± 11		
z9.6	0.450	1.350	1.319	0.556	2.06	3.81	0.84	0.76	49.4	42.0	9.8	78 ± 14		
s12.28	4.139	1.551	1.429	2.184	2.09	0.22	0.43	0.55	138.6	50.1	79.2	170.0		
m15	0.457	1.575	1.533	0.744	0.11	0.25	1.10	0.70	54.4	11.4	48.9	264.3		
s18.88	1.675	1.878	1.751	2.271	0.56	0.57	0.47	0.45	95.7	35.4	10.1	173.6		
s20	0.506	1.901	1.828	1.310	0.82	1.53	0.57	0.46	55.0	58.7	60.3	197.8		
s40	0.572	2.381	2.257	2.210	0.14	0.30	0.16	0.13	22.0	19.2	150.0		3.27	3.27
$u75_DD2$	0.519	2.889	2.743	2.616	0.21	0.39	0.18	0.15	26.7	18.0	118.6		0.99	1.34
u75_LS220_1	0.250	2.572	2.493	1.418	0.15	0.14	0.07	0.05	4.8	6.9	115.3		0.16	0.22
u75_LS220_2	0.248	2.573	2.494	1.397	0.13	0.23	0.12	0.13	11.6	5.4	102.1		0.39	0.53
$u75_LS220_hr$	0.254	2.563	2.484	1.425	0.14	0.31	0.12	0.12	11.4	7.1	87.2		0.99	
u75_SFHo	0.325	2.623	2.529	1.696	0.36	0.25	0.20	0.09	10.2	16.9	1.4			als)
							(high kicks O(100 Km/s)						

> neutrino-induced NS kicks: ~50–200 km/

high kicks O(100 km/s) expected for BHs from fallback SNe / BH SNe

> neutrino-induced BH kicks: ~few km/s (in failed SNe without asymmetric mass ejection)

NS and BH Kicks

NS and BH Kicks

Main results:

- Explosion energy: ~(0.1–1.5) x 10⁵¹ erg
- Radioactive ⁵⁶Ni: ~(0.01-0.1) M_☉ Radioactive ⁴⁴Ti: ~10⁻⁴ M_☉
- NS kick velocity: ~(100–1000) km/s

arXiv:2401.13817

References:

- > Kresse et al. (2024, in prep.)
- > Janka & Kresse (2024)
- > Sieverding, Kresse, & Janka (2023)
- > Bollig, Yadav, Kresse, et al. (2021)
- > Stockinger, Janka, Kresse et al. (2020)