Dust destruction by the reverse shock in clumpy supernova remnants

Florian Kirchschlager

Ilse De Looze, Mike Barlow, Nina Sartorio, Felix Priestley, Franziska Schmidt, Tassilo Scheffler

SNRIII 2024

Do we 'see' dust destruction in observations?

- Yes, but is not easy to observe!

Cas A

Herschel FIR maps show different emisson (and dust mass) inside and outside the reverse shock position ~70 % dust destruction

SED modelling indicates different temperature components, with different dust masses (shocked and unshocked regions) ~70 - 94 % dust destruction

Shocks and dust in SNRs

Shocks and dust in SNRs

Modelling of the whole SNR

E.g. Bocchio+ (2016); Micelotta+ (2016); Slavin+ (2020); Vasiliev & Shchekinov (2024)

- + Allows to follow dust grain processing for the whole SNR expanison time
- + Maps of the whole remnant
- Low spatial resolution of structures (e.g. clumps)
- Influence on dust destruction efficiency

Clumps represented only by a few pixels, clump disruption is not modelled, or clumps are completely ignored

Remnant size at 1000 years : ~10 pc Clump sizes ~0.001 pc

SNRs are clumpy

Highly resolved observations reveal detailed structure of SNRs

Full 3D models need high computational efforts

Solution: Model only a part of the remnant

Zoom-in

Cloud-crushing problem

- Dense clump in an interclump medium
- Gas density contrast $\chi = n_{clump}/n_{interclump} (\chi = 100 \dots 1000)$
- MHD-simulation of a planar shock impacting the clump using AstroBEAR (Cunningham+ 2009)

But this is only gas ...

Dust post-processing code Paperboats

Uses: 2D or 3D output of an MHD code (Gas density, temperature, velocity, magnetic field)

Calculates:

- Dust dynamics (gas & plasma drag, magn. field accelaration)
- Dust destruction (sputtering, fragmentation, vaporisation)
- Dust growth (gas accretion, ion trapping, coagulation)

projectile if $v_{\ell_i} > v_{cha}$

Kirchschlager + (2019);

Kirchschlager, Barlow, Schmidt (2020); Kirchschlager, Mattsson, Gent (2022); Kirchschlager+ (2023); Kirchschlager, Mattsson, Gent (2024a); Kirchschlager+(2024b)

In prep: Sartorio+; Scheffler+; Reckelbus+; Capobianco+

Sputtering

Grain-grain collisions

Binned grain size distribution

Initial grain size distributions

Focus today: silicate grains.

Final grain size distributions =

"Remnant" of initial grain sizes + Fragmentation distribution at lower sizes

Survival for different clump densities and grain sizes

Low gas densities ($\chi \sim 50-100$): Low survival rates for nm grains High survival rates for μ m grains High gas densities (χ >100-1000): Low survival rates at ~0.1 µm grains High survival rates for nm & µm grains

Sputtering vs. grain-grain collisions

Sputtering: Efficient at small grains (10 nm) if not too small Large gas drag on nm-grains and at high gas densities reduces dust destruction

Grain-grain collisions: Efficient for \sim 100 nm grains at high gas densities

Sputtering and grain-grain collisions are synergistic

Coupling/Decoupling of grains in magnetic fields

Beta acceleration of charged grains in magnetic fields

Spiraling of grains around magnetic field lines

shock-front v_⊥

Additional transport process

Coupling/Decoupling of grains in magnetic fields

Spiraling of grains around magnetic field lines

cause larger relative velocities of grains of different sizes

shock-front V₁

Larger dust destruction when magnetic fields are present

How does dust destruction change over time?

SNR expands: Gas conditions at the position of the reverse shock change.

Analytical solution for formation of the reverse shock

Bulckaen, Sartorio, Kirchschlager+

EVOLUTION OF A SUPERNOVA SHOCK

SN & FS FS shocks ISM Increase Pressure RS formation RS shocks ejecta Image: Shock of the shock of th

How does dust destruction change over time?

SNR expands: Gas conditions at the position of the reverse shock change.

3-step-approach

1) SN expansion

2) Clump – shock interaction

3) Dust

Dust dynamics Dust processing

First step:

- 1D MHD simulation of a SN expanding into a homogeneous ISM using AREPO (Springel+ 2010)
- Parameter set to reproduce Cas A like SNR (Micelotta+ 2016): $n_0 = 2.08 \text{ cm}^{-3}$; $E_{SN} = 2.2 \times 10^{51} \text{ ergs}$; $M_{ei} = 2.2 \text{ M}_{sun}$; n = 9

Dust destruction changes over time

Dust destruction per clump

Dust destruction in the whole SNR

- Clumps colliding early with RS: Total dust destruction.
- Clumps colliding at ~1000 yr with RS: Total survial.
- 2024: 10-35 % dust survival (grain sizedependent).
- Rough trend: The smaller the grains, the faster the destruction.

Dust destruction in the <u>entire SNR</u>:

- 2024: 70 % of the ejecta dust has already

passed the reverse shock.

65 – 70 % of the ejecta dust is destroyed.

- At 1000 yr: 17 % (1 nm) to 28 % (1 $\mu m)$ survival.
- Rough trend: The larger the grains, the higher the survival.
- Destruction at >1000 years can be ignored.

Sputtering vs. grain-grain collisions

- Sputtering (SP) dominant factor for most grain sizes and remnant ages.
- GG collisions additionally reduce survival fraction (large grains).
- At 300 and 500 yr, GG collisions even dominate against sputtering.

4-year period of the Summer Olympic Games and European Football Championships

Outlook

Outlook

Outlook

We need to study more realistic structures - observed filaments, knots, and clumps.

Inhomogeneous clumps

Reckelbus, Kirchschlager +, in prep.

Not enough dust yet?

Then come to the AG 2024 in <u>Cologne</u>, Germany, <u>12. + 13.9.2024</u> !

SPLINTER MEETING DUSTEVOL

DUST EVOLUTION IN GALAXIES - FOCUS ON SUPERNOVAE, AGB STARS AND THE ISM

Time: Thursday September 12, 14:00-15:45 and 16:15-18:00 and Friday September 13, 14:00-16:30 CEST (UTC+2)

Room: S12

Convenor(s): Florian Kirchschlager, Ilse De Looze, Nina Sartorio, Tassilo Scheffler, Fabian Walter, Kathryn Kreckel Ghent University, MPIA Heidelberg, Heidelberg University

Summary

Dust destruction in and around SNRs (strongly) depends on

- Grain sizes
- Clump/Gas densities
- Magnetic fields
- Remnant evolution

For Cassiopeia A: 17 % - 28 % dust mass survival.

General: We need to study more complex structures and environments to understand past, current and future dust destruction in SNRs.

