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Anisotropy drivers in Core-Collapse Supernovae

@ Progenitor

@ Hydrodynamic-Explosion instabilities (Convection, SASI)
o Magneto-rotational instabilities

@ Propagation (RTI) instabilities

@ Interaction with reverse shocks

o [ decay

@ Interaction with interstellar medium




Anisotropy drivers in Core-Collapse Supernovae

Progenitor

Hydrodynamic-Explosion instabilities (Convection, SASI)
Magneto-rotational instabilities

Propagation (RTI) instabilities

Interaction with reverse shocks

£ decay

Interaction with interstellar medium

PROMETHEUS-HOTB

3D long-time simulations (with simplified neutrino transport)




From explosion to shock breakout - Rayleigh Taylor Instabilities

iy
[=}]

@ Propagation of shock and
ejecta through progenitor — 151995
star
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@ Propagation of shock and

ejecta through progenitor
star

Shock (and ejecta)
decelerate/accelerate
when p = po(r/r)",
n>-3orn< -3
Rayleigh-Taylor

instabilities
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Strong mixing of ejecta

Shocks form at the
interfaces

From explosion to shock breakout - Rayleigh Taylor Instabilities
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Shocks, Reverse shocks and self-reflected reverse shocks

} [_)ensity [g/cm ™3]

! Radius [cm]i

o (Reverse)Shock form at interfaces and CSM-interaction

@ The shock from the He/H interface heats up material at small radii




Shocks, Reverse shocks and self-reflected reverse shocks
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o (Reverse)Shock form at interfaces and CSM-interaction

@ The shock from the He/H interface heats up material at small radii
= Temperature and entropy increase
= Outwards moving shock formed

@ Reverse shocks compress ejecta

@ Outwards moving shock accelerate ejecta




From explosion to shock breakout - 3% Ni surfaces

Model B15 - Ni surfaces
@ Initial big plumes created by
hydrodynamic instabilities during
explosion

v, [1000 km/s]
y T —
7.25 10.9 14.6 18.3

Wongwathanarat et al:72014



From explosion to shock breakout - 3% Ni surfaces

Model B15 - Ni surfaces
@ Initial big plumes created by
hydrodynamic instabilities during
explosion

o First Rayleigh-Taylor phase with

v, [1000 km/s] v, [1000 km/s] starting fragmentation of initial
7.25 10.9 14.6 18.3 -0.77 20 4.8 7.6 plumes

Wongwathanarat et al:72014



From explosion to shock breakout - 3% Ni surfaces

Model B15 - Ni surfaces
@ Initial big plumes created by
hydrodynamic instabilities during
explosion
o First Rayleigh-Taylor phase with

v, [1000 km/s] v, [1000 km/s] starting fragmentation of initial
7.25 10.9 14.6 18.3 -0.77 20 4.8 7.6 plumes

@ Reverse shock passes through the
ejecta (red color in bottom left
panel)

=- compresses central ejecta

Wongwathanarat et al:72014



From explosion to shock breakout - 3% Ni surfaces

Model B15 - Ni surfaces

@ Initial big plumes created by
hydrodynamic instabilities during

explosion
o First Rayleigh-Taylor phase with
v, [1000 km/s] v, [1000 km/s] starting fragmentation of initial
7.25 10.9 14.6 18.3 -0.77 20 4.8 7.6 plumes

@ Reverse shock passes through the
ejecta (red color in bottom left
panel)

=- compresses central ejecta

e Few strongly fragmented RT
fingers stick out

Wongwathanarat et al:72014



From shock break out towards homology -
Expansion of 3%-Ni surfaces
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From shock break out towards homology - 3% Ni surfaces

v, [1000 km/s] v, [1000 km/s] v, [1000 km/s] v, [1000 km/s]
7.25 109 146 183 077 20 48 76 027 [N} 28 39 0074 1. 22 33

Wongwathanarat et al. 2014
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Density slice (model B15)
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Different 3D models at 1 year
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Genus g = topologically invariant property of a surface

g=0 g=1 g=2 g=38

Negative for several isolated surfaces
1 shell: g = -1
n spheres: g = —n+1

n shells: g = —-2n+1

n detached tori: g =1

2 touching tori: g =2

n touching tori: g = n

Genus = 'number of holes’ = 'number of handles’
Application in 2D - Tycho's SNR, Sato et al., 2019




Genus statistic - Shell with holes

1k holes g = 48 3k holes g = —988 10k holes g =—440



Genus of shell with holes vs models
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Genus of shell with holes vs models
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@ Genus of 12C very similar to shell with holes

@ Genus of NiCoFeX always negative
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Genus of Model N20
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Genus of model €8.8
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@ 12C spherical shell no matter in center

@ NiCoFeX spherical shell and matter in center




Genus
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12C generally similar behaviour
NiCoFeX similar
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Conclusions

e Asymmetries are seeded during explosion t < 1s (or even from progenitor)
@ Final morphology carry imprints from initial assymetries

@ Progenitor structure determines conditions for RTl = determines mixing of ejacta during
propagation through progenitor
Poster by B. Giudici

@ Quantitative analysis shows significant differences between models: clump numbers, clump sizes,
separation, spherical harmonics, ...

o Genus statistics potential to characterize different morphologies in the ejecta
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