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Anisotropy drivers in Core-Collapse Supernovae

Progenitor

Hydrodynamic-Explosion instabilities (Convection, SASI)

Magneto-rotational instabilities

Propagation (RTI) instabilities

Interaction with reverse shocks

β decay

Interaction with interstellar medium
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PROMETHEUS-HOTB

3D long-time simulations (with simplified neutrino transport)



From explosion to shock breakout - Rayleigh Taylor Instabilities

Propagation of shock and
ejecta through progenitor
star

Shock (and ejecta)
decelerate/accelerate
when ρ = ρ0(r/r0)

n,
n > −3 or n < −3

Rayleigh-Taylor
instabilities
σ =

√
−p

ρ
∂ ln p
∂r

∂ ln ρ
∂r

⇒ Strong mixing of ejecta

Shocks form at the
interfaces
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Shocks, Reverse shocks and self-reflected reverse shocks
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(Reverse)Shock form at interfaces and CSM-interaction

The shock from the He/H interface heats up material at small radii

⇒ Temperature and entropy increase

⇒ Outwards moving shock formed

Reverse shocks compress ejecta

Outwards moving shock accelerate ejecta
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The shock from the He/H interface heats up material at small radii

⇒ Temperature and entropy increase

⇒ Outwards moving shock formed

Reverse shocks compress ejecta
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From explosion to shock breakout - 3% Ni surfaces

Wongwathanarat et al. 2015, Talk by B. Giudici

Model B15 - Ni surfaces

Initial big plumes created by
hydrodynamic instabilities during
explosion

First Rayleigh-Taylor phase with
starting fragmentation of initial
plumes

Reverse shock passes through the
ejecta (red color in bottom left
panel)

⇒ compresses central ejecta

Few strongly fragmented RT
fingers stick out

Wongwathanarat et al. 2014
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From shock break out towards homology -
Expansion of 3%-Ni surfaces

Homologous expansion:V ∼ r3
Homologous−−−−−−−→
Expansion

V /t3 = const.
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Initially:
slow expansion due to reverse
shock

Hours/days:
inflation due to self-reflected
shock and β-decay

100d - 1yr:
β-decay ceases, additional
inflation stops



From shock break out towards homology - 3% Ni surfaces

Wongwathanarat et al. 2014



Density slice (model B15)



Different 3D models at 1 year



Genus g = topologically invariant property of a surface

g = 0 g = 1 g = 2 g = 8

Negative for several isolated surfaces

1 shell: g = −1

n spheres: g = −n + 1

n shells: g = −2n + 1

n detached tori: g = 1

2 touching tori: g = 2

n touching tori: g = n

Genus = ’number of holes’ = ’number of handles’

Application in 2D - Tycho’s SNR, Sato et al., 2019



Genus statistic - Shell with holes

10 holes g = 7 50 holes g = 38 200 holes g = 133 500 holes g = 182

1k holes g = 48 3k holes g = −988 10k holes g = −440



Genus of shell with holes vs models
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Genus of 12C very similar to shell with holes

Genus of NiCoFeX always negative
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Genus of Model N20
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Genus of model e8.8
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But 12C different from NiCoFeX
28Si depend on the model



Conclusions

Asymmetries are seeded during explosion t ≲ 1s (or even from progenitor)

Final morphology carry imprints from initial assymetries

Progenitor structure determines conditions for RTI ⇒ determines mixing of ejacta during
propagation through progenitor

Poster by B. Giudici

Quantitative analysis shows significant differences between models: clump numbers, clump sizes,
separation, spherical harmonics, ...

Genus statistics potential to characterize different morphologies in the ejecta
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