3D long-term evolution of CCSN

Michael Gabler B. Giudici, H.T. Janka

University of Valencia Distinguished researcher Plan
 Gen T

11.06.2024

SNR - an Odyssey in space after stellar death III, Chania, Greece, 9-15 June, 2024

Anisotropy drivers in Core-Collapse Supernovae

- **•** Progenitor
- Hydrodynamic-Explosion instabilities (Convection, SASI)

KORK EXTERNE DRAM

- Magneto-rotational instabilities
- Propagation (RTI) instabilities
- **Interaction with reverse shocks**
- \bullet β decay
- Interaction with interstellar medium

Anisotropy drivers in Core-Collapse Supernovae

- **•** Progenitor
- Hydrodynamic-Explosion instabilities (Convection, SASI)
- Magneto-rotational instabilities
- Propagation (RTI) instabilities
- **•** Interaction with reverse shocks
- \bullet β decay
- **•** Interaction with interstellar medium

PROMETHEUS-HOTB

3D long-time simulations (with simplified neutrino transport)

From explosion to shock breakout - Rayleigh Taylor Instabilities

- Propagation of shock and ejecta through progenitor star
- Shock (and ejecta) decelerate/accelerate when $\rho = \rho_0 (r/r_0)^n$, $n > -3$ or $n < -3$

From explosion to shock breakout - Rayleigh Taylor Instabilities

- Propagation of shock and ejecta through progenitor star
- Shock (and ejecta) decelerate/accelerate when $\rho = \rho_0 (r/r_0)^n$, $n > -3$ or $n < -3$
- Rayleigh-Taylor instabilities $\sigma = \sqrt{\frac{2}{\pi}}$ $-\frac{p}{q}$ ρ ∂ ln p ∂r ∂ ln ρ ∂r
- \Rightarrow Strong mixing of ejecta
	- Shocks form at the interfaces

Shocks, Reverse shocks and self-reflected reverse shocks

- (Reverse)Shock form at interfaces and CSM-interaction
- The shock from the He/H interface heats up material at small radii

Shocks, Reverse shocks and self-reflected reverse shocks

- (Reverse)Shock form at interfaces and CSM-interaction
- The shock from the He/H interface heats up material at small radii
- Temperature and entropy increase
- Outwards moving shock formed
- Reverse shocks compress ejecta
- **Outwards moving shock accelerate ejecta**

Model B15 - Ni surfaces

• Initial big plumes created by hydrodynamic instabilities during explosion

Wongwathanar[at e](#page-6-0)[t](#page-8-0) [al](#page-6-0)[.](#page-7-0) 2014 2014 2014 È 2990

Model B15 - Ni surfaces

- Initial big plumes created by hydrodynamic instabilities during explosion
- First Rayleigh-Taylor phase with starting fragmentation of initial plumes

Wongwathanar[at e](#page-7-0)[t](#page-9-0) [al](#page-6-0) ∞ 2014 \longrightarrow 299

Model B15 - Ni surfaces

- Initial big plumes created by hydrodynamic instabilities during explosion
- First Rayleigh-Taylor phase with starting fragmentation of initial plumes
- Reverse shock passes through the ejecta (red color in bottom left panel)
- ⇒ compresses central ejecta

Wongwathanar[at e](#page-8-0)[t](#page-10-0) [al](#page-6-0)[.](#page-7-0) 2014 2014 2014 299

Model B15 - Ni surfaces

 7.6

- Initial big plumes created by hydrodynamic instabilities during explosion
- First Rayleigh-Taylor phase with starting fragmentation of initial plumes
- Reverse shock passes through the ejecta (red color in bottom left panel)
- ⇒ compresses central ejecta
- Few strongly fragmented RT fingers stick out

Wongwathanar[at e](#page-9-0)[t](#page-11-0) [al](#page-6-0)[.](#page-7-0) 2014 2014 2014 $2Q$

From shock break out towards homology - Expansion of 3%-Ni surfaces

Homologous expansion:
$$
V \sim r^3 \xrightarrow{Homologous} V/t^3 = \text{const.}
$$

Compared to homologous expansion (horizontal line)

- **o** Initially: slow expansion due to reverse shock
- Hours/days: inflation due to self-reflected shock and β -decay
- 100d 1yr: β -decay ceases, additional inflation stops

 2990

Density slice (model B15)

イロメ イ部メ イ君メ イ君メー 活 2990

Different 3D models at 1 year

- Negative for several isolated surfaces
- 1 shell: $g = -1$
- n spheres: $g = -n + 1$
- n shells: $g = -2n + 1$
- n detached tori: $g = 1$
- 2 touching tori: $g = 2$
- n touching tori: $g = n$
- Genus $=$ 'number of holes' $=$ 'number of handles'
- Application in 2D Tycho's SNR, Sato et al., 2019

Genus statistic - Shell with holes

10 holes $g = 7$ 50 holes $g = 38$ 200 holes $g = 133$ 500 holes $g = 182$

1k holes $g = 48$ 3k holes $g = -988$ 10k holes $g = -440$ $g = -440$

Genus of shell with holes vs models

Genus of shell with holes vs models

- Genus of 12 C very similar to shell with holes
- **•** Genus of NiCoFeX always negative

Genus of Model N20

Genus of model e8.8

- ¹²C spherical shell no matter in center
- NiCoFeX spherical shell and matter in center

- \bullet ¹²C generally similar behaviour
- NiCoFeX similar
- \bullet But 12 C different from NiCoFeX
- ²⁸Si depend on the model

Conclusions

- Asymmetries are seeded during explosion $t \leq 1s$ (or even from progenitor)
- Final morphology carry imprints from initial assymetries
- Progenitor structure determines conditions for $RTI \Rightarrow$ determines mixing of ejacta during propagation through progenitor

Poster by B. Giudici

- Quantitative analysis shows significant differences between models: clump numbers, clump sizes, separation, spherical harmonics, ...
- Genus statistics potential to characterize different morphologies in the ejecta