

Evolution of magnetic field structure in SN1987A

O. Petruk, S. Orlando, V. Beshley, M. Miceli, F. Bocchino INAF-Palermo, Italy Università degli Studi di Palermo, Italy IAPMM, Lviv, Ukraine

SN1987A: structures

- Young SNR -> monitored
- Rather close -> resolved
- That allows us to study structures

- CSM structure
- ejecta structure
- PWN

JWST [Larsson+ 2023]

Looking back at the history of the progenitor

Mass loss history

$$\rho_{\rm CS} = \frac{\dot{M}}{4\pi r^2 u_{\rm wind}}$$

Rotation history

Propagating shock probes the earlier times

What about the magnetic field?

We make use of the radio data

- Light curves
- Spectra evolution
- Images evolution
- Polarization

ATCA 22 GHz [Zanardo+ 2018]

3D MHD numerical simulations

Initial conditions

Figure 1. Rendition in log scale of the circumstellar nebula around SN 1987A model initial conditions. The ring consists of a uniform smooth component and high-density spherical clumps, and is shown in red; the H π region around the ring is marked by the blue clipped component. The white dot at the center of the coordinate system shows the position of the SN explosion.

Light curves vs 3D numerical model

Take away

- the forward shock dominates the radio emission
- equatorial ring and ejecta do not contribute to the radio emission

Spectrum

blue and green dots (Zanardo+ 2010, 2017) black line – our approximation

Take away

- the spectrum up to ~100 GHz is well approximated by a power law [Zanardo+ 2014]
- the radio light curve is sensitive to *a*(*t*)
- we account for *a*(*t*) in our simulation
- *a(t)* should be used in the Lagrangian approach

cross-section a

Images

observations [Zanardo+ 2017; Cendes+ 2018]

theory [Orlando+ 2011]

 $= 0^{\circ}$

V₿

Take away

- East-West asymmetry in brightness
- there should be a gradient of B

3D model of ambient MF with a gradient

Parker spiral

$$B_{\rm r} = \frac{A_1}{r^2}$$
, $B_{\phi} = -\frac{A_2}{r}\sin\theta$,

exponential MF

$$B_{ex} = B_e \exp(-x/h)$$
$$B_{ey} = \frac{\xi y}{h} B_e \exp(-x/h)$$
$$B_{ez} = \frac{(1-\xi)z}{h} B_e \exp(-x/h)$$

Polarization

ATCA 22 GHz (1.4 cm) [Zanardo+ 2018] colors: polarized intensity @22 GHz contours: total intensity @44 GHz lines: polarization vectors (*B*)

$$B_{\rm r} = \frac{A_1}{r^2}$$
, $B_{\phi} = -\frac{A_2}{r}\sin\theta$,

Take away

- Parker spiral has low tangential component of **B**

Steps in 3D modeling

1. Numerical experiment

- Initial conditions (CSM, CSMF)
- 3D MHD simulations

2. Post-processing

- 3D distribution of relativistic electrons
 spectrum at the shock N(E)=K(n)E^{-[2a(t)+1]}
 evolution of the spectrum downstream
- 3D distribution of the random *dB* [*TBD*] over the shock
 - evolution downstream
- 3D structures of the Stokes parameters *I,Q,U*

3. Synthesis of the observables

- Orientation of the remnant
- Faraday effect inside the SNR
- Integration along the line of sight

orientation vs the observer Potter+ 2014

Figure 1. Cartoon of the equatorial ring showing the inclination of the environment at angles $i_x = 41^\circ$, $i_y = -8^\circ$, $i_z = -9^\circ$. The rotated cylindrical coordinate system radial coordinate s' and vertical coordinate z' has z' parallel to the plane normal.

model vs observations: radio light curve

model vs observations: radio images

observations [Zanardo+ 2017; Cendes+ 2018]

Asymmetry progresses

model vs observations: polarization

observations [Zanardo+ 2018]

Exploration of the model

Evolution before and after 2017

Evolution of the polarized emission

Evolution of MHD structures

Three phases for the years 1996-2017

are clear from polarization maps (not so visible in the total intensity maps)

- 1. at the beginning of interaction with Hii region, MF lines are forced to align with the surface of Hii region
- 2. then the MF polarization directions change due to interactions with the CSM structures
- 3. and finally the polarized emission from Hii region dominates the pattern

Fragment of the shocked ISM @ 2014 in our model

Shock runs around the ring

- Shock beyond the ring from 2012-2016 [Frank+ 2016, Larsson+ 2019]

Evolution after 2017

Fragment of the shocked ISM @ 2021 in our model

Ejecta touches the ring

- Shock beyond the ring from 2012-2016 [Frank+ 2016, Larsson+ 2019]
- Ejecta is expected to be dominant in X-rays in 2022-2027 [Orlando+ 2015]

Evolution after 2017

- Shock beyond the ring from 2012-2016 [Frank+ 2016, Larsson+ 2019]
- Ejecta is expected to be dominant in X-rays in 2022-2027 [Orlando+ 2015]
- Interaction of ejecta with the shocked Hii material and equatorial ring -->
 effect from newly generated instabilities could be visible in polarization pattern

Conclusions

- A tool and an MHD model to synthesize the polarization maps
- EW asymmetry due to a gradient of MF strength in CSM (*h~0.23 pc*)
- Low tangential B (NB: at the location of the shock at 2017)
- Three stages in MF evolution to 2017
- The ejecta is starting to interact with the equatorial ring This could be reflected in the polarization maps
- The radio evolution is quite important for the history of the progenitor, in particular for the history of its wind and rotation

