High-Resolution X-Ray Spectroscopy of Supernova Remnants: From Dispersive Spectrometer to Micro-calorimeter

Satoru Katsuda (Saitama University, Japan)

Need for High-Res. X-Ray Spectroscopy

X-ray CCDs can not resolve fine structures. \rightarrow Better resolution (E/ Δ E > 100) is a must!

Micro-calorimeter (Resolve) aboard XRISM

After three Japan-US led missions ASTRO-E1 (2000), Suzaku (2005-2015), Hitomi (2016), we finally have an in-orbit X-ray microcalorimeter since 2023!

<u> XRISM:</u>

- The 7th Japanese X-ray astronomy satellite
- Successfully launched on Sep. 7th 2023

□ X-ray micro-calorimeter (Resolve):

- $\Delta E: \sim 5 \text{ eV}$ (Non-dispersive!)
- Spatial resolution: ~1'
- FoV: 3'x3' (6x6 array)
- Dynamic range: 0.2-10 keV (NB: 2-10 keV at this moment)

Some early results were presented in this conference by B. Williams and P. Plucinsky.

Gratings onboard XMM-Newton & Chandra

Gratings onboard XMM-Newton & Chandra

<u>Spectral resolution of a grating spectrometer:</u>

- $\Delta\lambda \sim d \sin\alpha \Delta\theta / m$
- d: grating spacing (Å)
- $\boldsymbol{\alpha} {:} \text{ angle of incidence}$

 $\Delta \theta$: spatial extent of the source or telescope's angular resolution for a point source *m*: spectral order

	Chandra HEG	Chandra M	EG XMM RGS
d (Å)	2000	4000	15500
α	~90 deg	~90 deg	~1.6 deg
d sin $lpha$ (Å)	2000	4000	420
$\Delta\lambda$ (Å for <i>m</i> =1; $\Delta\theta$ = PSF)	0.01	0.02	0.03
$\Delta\lambda$ (Å for <i>m</i> =1; $\Delta\theta$ = 1')	0.58	1.16	0.12
	Strong for "-scale	e sources	Strong for '-scale sou

Specific Sciences from High-Res. Spectroscopy

– Ejecta dynamics

- 3D ejecta/CSM structures
- Collisionless shock physics
 - T_i - T_e equilibration
 - Cosmic-ray acceleration
- Plasma diagnostics
 - New emission processes
 - Thermodynamic parameters
- Composition measurements
 - Odd-Z/neutron-rich elements

3D Structures of Young SNRs

3D ejecta distributions are the key to understand the progenitor and explosion mechanism.

3D hydrodynamic simulation (e.g., Orlando et al. 2022)

JWST view (e.g., Milisavljevic et al. 2024)

- Si-rich jets
- ightarrow jet-induced explosion
- Fe/Si inversion, Ti-rich ejecta
- \rightarrow high-entropy ejecta plume
- Ni bubble effects

Remnant of Type Ia D6 model (Ferrand et al. 2022)

/-position [10¹¹ cm]

Cas A with Chandra/HETG

SNR III

HETG spectroscopy (Lazendic et al. 2006)

Line of sight locations of 21 knots measured by Si K lines

G292.0+1.8 with Chandra/HETG

Puppis A: ONeMg-rich Ejecta

Puppis A: Fe-rich Ejecta

Energy (keV)

Tycho

Kepler: 3D Ejecta Distribution

□ Some ejecta knots are expanding freely (see also, Sato & Hughes 2017).
□ More ejecta reside in the far side. → Asymmetric explosion? Need more samples.

Kepler: 3D CSM Distribution

RGS spectroscopy (Kasuga, Vink, SK...2021)

Energy (keV)

Geometry of the CSM Ring in SN 1987A

2024/6/14

A Remarkable Extragalactic Supernovae

Specific Sciences from High-Res. Spectroscopy

- Ejecta dynamics
 - 3D ejecta structures
 - \rightarrow Explosion asymmetries & NS kicks
- Collisionless shock physics
 - T_i - T_e equilibration
 - Cosmic-ray acceleration
- Plasma diagnostics
 - Thermodynamic parameters
 - Radiative processes
- Composition measurements
 - Odd-Z/neutron-rich elements

SN 1006: Temperature Nonequilibration ($T_0 >> T_e$)

Dotted line: emission model w/o thermal broadening Solid line: emission model w/ thermal broadening

Tycho: Temperature Nonequilibration (T_i >> T_e)

The (reverse) shock speed is estimated to be 3500 km/s.

SN 1987A: Temperature Nonequilibration ($T_i >> T_e$)

HETG spectroscopy (Miceli et al. 2019)

The ion temperatures are in good agreement with the mass-proportional temperature.

Specific Sciences from High-Res. Spectroscopy

- Ejecta dynamics
 - 3D ejecta structures
- Collisionless shock physics
 - T_i - T_e equilibration
 - Cosmic-ray acceleration
- Plasma diagnostics
 - Thermodynamic parameters
 - New radiative processes
- Composition measurements
 - Odd-Z/neutron-rich elements

Anomalously High O VII He α f/r Ratios

RGS spectra revealed that O VII He α f/r ratios are higher than expected in some SNRs.

Possible Causes of Anomalous f/r Ratios

- Reducing "r" line
 - Resonance scattering (self absorption)
 - Absorption by foreground ionized ISM
- Enhancing "f" line
 - Charge exchange
 - Recombination (recombination-dominated plasmas)
 - Inner-shell ionization (low-T and/or low-nt plasmas)
 - Proton excitation (resonance line is absent)

Recent Interesting Finding from N132D

Strong high-n transition lines may be a signature of CX X-rays.

XRISM collaboration to be submitted to PASJ Presented by Brian Williams

(See also, XRISM first light press release: https://www.jaxa.jp/press/2024/01/20240105-1_j.html)

SK et al. in prep.

Specific Sciences from High-Res. Spectroscopy

- Ejecta dynamics
 - 3D ejecta structures
- Collisionless shock physics
 - T_i - T_e equilibration
 - Cosmic-ray acceleration
- Plasma diagnostics
 - Thermodynamic parameters
 - New radiative processes
- Composition measurements
 - Odd-Z/neutron-rich elements

CNO Abundances of the CSM in SNRs

Name	SN Type	N/O	$R^a_{\rm CSM}$ (pc)	$M^b_{\rm CSM} (M_{\odot})$	References
		(solar)			
SN 1987A	CC	8	0.2	0.1	[2, 103, 149]
SN 1978K	CC	12	$\lesssim 0.05$	1	[29, 92, 134]
RX J1713.7-3946	CC	7	4–9	0.002	[154]
G296.1-0.5	CC	4	12	15	[25, 152]
G292.0+1.8	CC	1	7	1.7	[8, 166]
Kepler's SNR	Ia	1–6	3	0.3	[10, 74, 79]
N103B	Ia	0.5	3	3	[11, 176,
					187]

Table 13.2	Properties of CSM detected in SNRs
-------------------	------------------------------------

RGS spectroscopy of a CSM knot in RX J1713 (Tateishi, SK+ 2021).

The N/O abundance ratio in the stellar wind is more enhanced with increasing M_{7AMS} , as dM/dt increases with M_{ZAMS} .

from

=> N/O can constrain M_{ZAMS} .

More Recent Progresses in CNO Studies

RGS spectroscopy (Narita et al. 2023)

 $N/O = 3.8 \pm 0.1$ solar

In this case, a low-mass (10-12 M_®), relatively slow rotation (<100 km/s) progenitor is preferred. CNO abundance is essential to determine the progenitor mass, rotation, and evolution, and overshoot parameters (e.g., Uchida & Narita 2023).

See also Posters S3-23 & S3-2 by Narita et al. and Anazawa et al.

Micro-calorimeter (Resolve) aboard XRISM

- The 7th Japanese X-ray astronomy satellite
- Successfully launched on Sep. 7th 2023

□ SNRs (to be) observed in the Performance Verification phase: N132D*, Cas A*, Tycho, Sgr-A East, Kepler, W49B, 3C397, SN 1987A, SN 2024iss, Cygnus Loop (cal), E0102 (cal)

*Talks by Brian Williams and Paul Plucinsky

XRISM will deliver many exciting results shortly!

However, the energy coverage is currently limited to 2-10 keV. Therefore, gratings aboard XMM and Chandra are still very important to fully explore X-ray emission.

Chapter 13 of the Springer Book "Highresolution X-ray spectroscopy"

arXiv:2302.13775

Name	Distance (kpc) ^{<i>a</i>}	Age (yr)	Type ^b	References for high-resolution X-ray spectroscopy			
				Einstein	Chandra	XMM- Newton	Hitomi
Cygnus Loop	0.73±0.02	$1-2 \times 10^{4}$	CC	[162]	_	[156]	_
RX J1713.7-3946	0.9±0.6	1629	CC		_	[154]	_
Puppis A	1.3±0.3	4450±750	CC	[22, 181, 182]	_	[81, 83]	—
SN 1006	~2	1016	Ia	—	—	[20, 163, 168]	—
RCW 86	2.2±0.4	1837	Ia	—	_	[18]	—
Tycho's SNR	3±1	450	Ia	—	[107]	[30, 178]	—
Crab Nebula	$3.37^{+4.04}_{-0.11}$	968	CC	[140, 141]	[172, 173]	[71]	[58]
Cas A	$3.4^{+0.3}_{-0.1}$	342±19	CC	[101]	[95, 133]	[14]	—
G296.1-0.5	4.3±0.8	~ 28000	CC	—	—	[25, 152]	—
G21.5-0.9	4.4±0.2	870^{+200}_{-150}	CC	—	—	—	[59]
Kepler's SNR	~5	418	Ia	—	[106]	[10, 74, 79]	_
G292.0+1.8	6.2±0.8	3000±60	CC	_	[166]	[8]	_
SN 1987A	LMC	35	CC	_	[2, 15, 36, 37, 104, 105, 128, 149, 192–194]	[51, 54, 148]	
SNR 0509-67.5	LMC	310^{+40}_{-30}	Ia	_	_	[88, 89, 175]	_
SNR 0519-69.0	LMC	600±200	Ia		_	[87, 88, 175]	_
N103B	LMC	~800	Ia	_	_	[158, 187]	—
SNR 0540-69.3	LMC	~1200	CC	—	—	[161]	—
N132D	LMC	~ 2500	CC	[65]	[24]	[6, 150]	[57]
SNR 0506-68.0	LMC	~4000	CC	—	—	[19]	—
DEM L71	LMC	~4400	Ia	—	—	[160]	—
N49	LMC	$\sim \!\! 4800$	CC	—	—	[3]	—
SNR 0454-6713	LMC	$\sim \! 8000$	Ia	—	—	[142]	—
SNR 0453.6-6829	LMC	~13000	CC	—	—	[56, 90]	—
SNR 0453-6655	LMC	~60000	CC	_	_	[144]	—
1E 0102.2-7219	SMC	~2000	CC		[24, 44, 159]	[119, 127]	

Summary

- High-resolution X-ray spectroscopy is a longanticipated discovery space especially for diffuse sources like SNRs.
- Cutting-edge researches have been explored by grating spectrometers onboard XMM-Newton and Chandra.
- The Japan-US X-ray astronomy satellite, XRISM (2023-), is now vigorously developing this research field.