Unveiling the progenitors of young supernova via their circumstellar interaction Poonam Chandra National Radio Astronomy Observatory

Collaborators: Roger A. Chevalier, Raphael Baer-Way, Keiichi Maeda, A. J. Nayana, Maryam Modjaz, Claes Fransson, Claes-Ingver Bjornsson, Nikolai Chigai, Alak Ray, Stuart Ryder

Also see the invited talks by A. Chiotellis and **N. Smith** on circumstellar interaction Supernova Remnants III: An odyssey in space after stellar death, 9-15 June 2024, Chania, Crete, Greece

Credit: NASA/NRAO

Mass loss from stars

Circumstellar medium

Mass-loss from the St n ~ 10⁻¹⁴ M_{\odot}/yr

@PC

Mas sloss from massive stars

Circumstellar medium

Mass-loss from massive stars

10-5 M⊙/yr

umstellar interaction Cir

Forward Shock

Reverse Shock

Contact Discontinuity

@PC

Supernove (Core collapse)

Type I No Hydrogen

@PC

Type Ib Helium

Type Ic No Helium

t=-1000 yr

Type IIb Little Hydrogen

Type IIn Narrow H emission

Type IIP LC plateau

Type IIL LC linear

Why do we study circumstellar interaction in Supernovae

- Archival data- moments before death
- Limited to nearby supernovae

NASA, ESA, S. Van Dyk (Caltech), and W. Li (University of California)

2007

WFPC2 F555W

2017

Why do we study circumstellar interaction in Supernovae

- Mapping between massive star and supernovae
- Mass-loss rate measurements
 - The initial to final mass ~ 50% uncertainty (Renzo+2017, Zapartas+2021)
 - Complexities due to binarity, magnetism, rotation, metallicity, wind clumping, asymmetry.

Zapartas+2021

Credit: NASA/NRAO

Evolution of supernova progenitor

- Time Machine Look back time= ejecta speed/wind speed
- Wind velocities and ejecta speeds different for different kinds of supernovae
 - Type IIP, ejecta speed ~10,000 km/s, wind ~10 km/s, Look back time ~1000
 - Type IIn, ejecta speed ~6000 km/s, wind ~100 km/s, look back Time ~60
 - Type Ic, ejecta speed ~30,000 km/s, wind~1000 km/s, look back time ~30

Why do we study circumstellar interaction in Supernovae

Multiwvelength study of circumstellar interaction in a Type Ion supernova

Please see poster and 1m talk by Raphael Baer-way

A Multiwavelength Autopsy of the Interacting Supernova 2020ywx

Raphael Baer-Way, Poonam Chandra, Maryam Modjaz, Roger Chevalier, Sahana Kumar, Craig Pellegrino rbaerway@virginia.edu

Introduction

- While interacting supernovae (defined by extensive interaction between the supernova ejecta and dense pre-existing circumstellar material) are being discovered at increasing rates across the electromagnetic spectrum, their progenitor channels are still relatively unconstrained
- Combining evidence across wavelengths is a robust way to constrain possible progenitor mechanisms
- We seek to do this for SN 2020ywx-a type IIn supernova at 96 Mpc which showed signatures of strong interaction from the earliest observations
- Through radio (GMRT+VLA), optical/NIR photometric+spectroscopic (ZTF+MMT+Magellan+Keck+LCO) and X-ray (Swift+Chandra) observations, we constrain the mass-loss rate across wavelengths/time and different components of interaction

Optical/IR

 SN 2020ywx is similar to other SNe IIn in the optical-multi-component line emission from ejecta+shell between forward and reverse shock+unshocked **Circumstellar Medium** v____~115 km/s

IVERSITY/VIRGINIA

X-Rays

- In the X-rays, SN 2020ywx is highly luminous-2nd most luminous X-ray SNe IIn of all time-peaking at 7x10⁴¹ ergs/s
- X-ray emission is coming from the

HOW?

Flashionization

• Observations of supernovae within hours of days

0.26 d 0.30 d 0.37 d 0.42 d 0.88 d 1.4d 2.0d 5.3d 8.8d 10.9d 20.2d 22.4d 27.1d 31.3d 43.3d

- Number of narrow emission lines from highly ionized species - flash ionization
- Ionization of CSM at shock breakout earliest traces of CSM (Gal-Yam et al. 2014, Khazov et al. 2016, Kochanek 2019)

Flashionization

Shock breakout - SN 2008D

SN 2008D SN 2008D O ດ January SN 2007uy (SN 2007uy 🔿 30" 30" E←

Soderberg,...PC... 2008

Flashionization

• Observations of supernovae within hours of days

0.26 d 0.30 d 0.37 d 0.42 d 0.88 d 1.4d 2.0d 5.3d 8.8d 10.9d 20.2d 22.4d 27.1d 31.3d 43.3d

- Number of narrow emission lines from highly ionized species flash ionization
- Ionization of CSM at shock breakout earliest traces of CSM (Gal-Yam et al. 2014, Khazov et al. 2016, Kochanek 2019)
- Disappear within few days confined CSM (Khazov+16)
- Mass loss rate ~ 10⁻³ $M_{\odot}\,$ yr^{-1.} Denser CSM extending to <10¹⁵ cm
- Type IIP iPTF13dqy (SN 2013fs, Yaron et al. 2017).
 Several ZTF supernovae (Bruch+23, Perley+19)
- Binarity less probable, gravity waves instabilities (Shiode, Quataert)

Dense CSM- also seen in other bands

Enhanced mass-loss rates also seen in ALMA mm data (Maeda, PC+21, Maeda, PC+23, Maeda, Michiyama, pc+23)

X-ray emission - circumstellar interaction

Forward Shock 10⁹ K

@PC

Reverse Shock 107K

Contact discontinuity

- Hot forward shock 10⁹K
- Reverse shock 10⁷K
- RS density (n-3)*(n-4)/2 x FS density ~factor of ~20
- Most dominant reverse shock ~1keV
 - $L_{\rm i} = 4$
- Luminosity ~ density²
- Observational evidence (Schlegel+95, Immler+2002, Dwarkadas+2012)

n - ejecta density profile ho^{-n}

$$\pi \int \Lambda_{\rm ff}(T_{\rm e}) n_{\rm e}^2 t^2 dr \approx \Lambda_{\rm ff}(T_{\rm i}) \frac{M_{\rm i} \rho_{\rm i}}{(\mu_{\rm e} m_H)^2}$$

X-ray emission - circumstellar interaction Reverse shock radiative

Cooling time ~ Chevalier, Fransson 2017

Radiative reverse shock,

 $L_{\rm rev} = 4\pi R_{\rm s}^2 \frac{1}{2} \rho_{\rm ej} V_{\rm rev}^3$

• SN 1993J - Radiative Reverse Shock - Fransson+96

 $t_{
m cool}$

Luminosity ~ density

X-ray emission - circumstellar interaction Reverse shock radiative - SN 1993J

PC+2009

 Reverse shock radiative up to ~ 5 years after explosion and adiabatic after that (PC+2009)

 Consistent with SN 1993J modeling (Nomoto & Suzuki)

X-ray emission - circumstellar interaction Reverse shock radiative - SN 1993J

Nymark et al. 2006, Nymark, PC, Fransson+2009

- Reverse shock radiative up to ~ 5 years after explosion and adiabatic after that (PC+2009)
- Consistent with SN 1993J modeling (Nomoto & Suzuki)
- Single temperature model invalid (Nymark et al. 2006)
- Demonstrated multi-temperature model in SN 1993J (Nymark, PC, Fransson 2006)

X-ray emission - circumstellar interaction

Fransson et al. 1996

.

- Reverse shock radiative up to ~ 5 years after explosion and adiabatic after that (PC+2009)
- Consistent with SN 1993J modeling (Nomoto & Suzuki)
- Single temperature model invalid (Nymark et al. 2006)
- Demonstrated multi-temperature model in SN 1993J (Nymark, PC, Fransson 2006)

Cool dense shell

Forward Shock

@PC

Reverse Shock

Contact discontinuity

sion - circumstellar interaction

X-ray emission - circumstellar interaction Hard X-rays

X-ray emission - circumstellar interaction Hard X-rays NuSTAR revolutionary

X-ray emission - circumstellar interaction Hard X-rays

• Brethauer+22

- NuSTAR revolutionary
- Temperature evolution of SN 2014C (Brethauer+22)

X-ray emission - circumstellar interaction Hard X-rays

SN 2023ixf - Grefenstette+23

- NuSTAR revolutionary
- Temperature evolution of SN 2014C (Brethauer+22)
- SN 2023ixf hard X-rays (Grefenstette+23)
- Adiabatic forward shock (PC+23)
- Cooling time larger for forward shock

X-ray emission - circumstellar interaction Hard X-rays - radiative forward shock (PC+18, PC+15, PC+12)

X-ray emission - circumstellar interaction Hard X-rays - radiative forward shock (PC+18, PC+15, PC+12)

X-ray emission- Circumstellar interaction Non-thermal X-rays

- Inverse Compton component of Xrays
- Usually in type Ib/c supernovae with large ejecta speeds
- Usually in Type IIP supernovae with large supply of photons
- See Chakraborty+12, 13, Soderberg+11, Margutti+12 etc.

Chakraborty,...PC...2012

X-ray emission - circumstellar interaction Picture of progenitor evolution

PC+09, 15, 18

Radio emission

- Magnetic field amplification at the contact discontinuity \bullet
- Acceleration of electrons in the forward shock
- Non-thermal Synchrotron forward shock emission ightarrow
- Radio emission from the fastest ejecta ightarrow

Forward Shock

Reverse Shock

Contact discontin

Radio emission

Forward Shock

@PC

Reverse Shock

Contact discontinuity

Chandra 2018, Bietenholz et al. 2021, Weiler et al. 2007

Absorption of Radio emission

ISM

Unshocked CSM

Shocked CSM

Shocked ejecta

Unshocked Ejecta

SN photosphere

Explosion centre

Synchrotron emission

 Synchrotron self-absorption (fast ejecta, low mass-loss rate, Ib/Ic,IIb etc. see Nayana, PC+,2022, 2023)

• Magnetic field, size etc

Nayana, PC+22

Absorption of Radio emission

Synchrotron emission

Synchrotron self-absorption (fast ejecta, low mass-loss rate, lb/lc,llb etc. see Nayana, PC+,2022, 2023)

• Magnetic field, size etc

Free-free absorption (slow ejecta, large mass-loss rate)

Density of the medium, mass-loss rate

Absorption of Radio emission

Synchrotron emission

- •

,PC+12

InternalFFA

Synchrotron self-absorption (fast ejecta, low mass-loss rate, Ib/Ic,IIb etc. see Nayana, PC+,2022, 2023)

• Magnetic field, size etc

Free-free absorption (slow ejecta, large mass-loss rate)

Density of the medium, mass-loss rate

Internal free-free absorption (radiative shock, cool dense shell, mixing of cool gas)

PC+12

 $M_a \approx 2 \times 10^{-8} T_4^{5/2} M_{\odot}$

Radio emission-low frequency observations critical

- Low frequency observations critical
- Nayana)

Nayana, PC+22

SSA

Binarity in supernovae progenitors Maeda, Chandra et al 2023, Maeda, Michiyama and Chandra 2023 et al., ApJ

- SN 2018ivc dimming 200 days after the initial explosion
- Rebrightening at 1000 days ALMA data
- A large amount of CSM surrounding the exploding star at 0.1 light-years.
- Large amounts of CSM outcome of a strong binary interaction that took place about 1500 years before the SN explosion. ALMA 100 GHz

200 days after explosion

-1000 days after explosion-

Binarity in supernovae progenitors SN 2014C - Anderson et al. 2017

SN 1986J

Microscopic parameters

Radio and X-ray emission - under the equipartition assumption Need not be true always (e.g. PC+2004) Inverse Compton cooling Synchrotron cooling

Progenitor histories via radio observations SN 2017hcc - a Type IIn SN - radio, X-ray, IR studies for 4 years

- Shock breakout mass loss rate 0.1 M_o/yr⁻¹ at one month (80 years before the star exploded)
- Power generated by the shock (IR) Few 100 days IR 2 x 10⁻³ M_o/yr⁻¹ (300 yrs before explosion)
- Radio data 1000 days mass loss rate 6 x 10⁻⁴ M_☉/yr⁻¹ (3000 years before explosion)

Stage

Fe

Timescale

Summary

- Flash ionization <10¹⁵ cm
- X-ray emission ~10¹⁵-10¹⁶ cm
- Radio emission ~ 10^{15} > 10^{17} cm

Radio

t=-1000 yr

 Circumstellar interaction - Best way to build gap between stellar evolution and end products

X-rays

Flash ionization

t=0 yr

Summary

Summary

- supernova Experiment, DLT40, ZTF etc
- Radio facilities
 - ALMA mm bands (>100 GHz)
 - VLA (1-40 GHz)
 - GMRT (0.4-1.4 GHz)
- X-ray facilities
 - Chandra, XMM-Newton, Swift-XRT (<10 keV)
 - NuSTAR (<100 keV) Radio

t=-1000 yr

Optical surveys capturing supernovae within hours - Young

Flash ionization

