

Collimated Fe-rich ejecta in the magnetar-hosting supernova remnant Kes 73

Marco Miceli

Department of Physics and Chemistry E. Segrè, University of Palermo - Italy INAF-Osservatorio Astronomico Palermo - Italy

With the help of: Emanuele Greco, Ping Zhou, Salvatore Orlando, Fabrizio Bocchino, Miguel Angel Aloy, Martin Obergaulinger, Michael Gabler, Nanda Rea, Jacco Vink

Magnetars

Isolated neutron stars characterized by strong activity and high variability, mainly powered by magnetic energy

Surface $B \approx 10^{13}$ - 10^{15} G (probably even higher in the interior): magnetars are *the strongest* magnets in the present universe

Magnetars – birth rate

- About 30 Galactic magnetars
- ~10% of young neutron stars (Kaspi & Belodorov 2017), but large uncertainties
- Birth-rate: ~0.3 (100 yr)⁻¹ (Turolla et al. 2015)
- Rate of CCSNe $\sim 1.6 \pm 0.4$ (100 yr)⁻¹ (Rozwadowska et al. 2021)

Magnetars are not rare

Magnetars in extreme phenomena

Magnetars are invoked in several energetic astrophysical environment:

- GRBs (e.g., Zhang & Meszaros 2001 ; Troja et al. 2007; Rowlinson et al. 2013;...)
- FRBs (e.g., Beloborodov 2017; Mereghetti et al. 2020;...)
- Super-luminous SNe (e.g., Maeda et al. 2007; Woosley 2010; Margutti et al. 2018;...)

Peculiar conditions at birth:

 Dynamo model: rapidly rotating protoneutron star (T=1-3 ms) powering an < energetic SN explosion (e.g. Duncan & Thompson 1992) B amplification via turbulent dynamo triggered by magnetorotational instabilities

 Fossil field scenario: progenitor star with strong magnetic fields (e.g. Ferrario & Wickramasinghe 2006)

Magnetic flux conservation from very magnetized progenitors (O, B, A stars)

Both scenarios require some assumptions and have been severely challenged

 Dynamo model: rapidly rotating protoneutron star (T=1-3 ms) powering an energetic SN explosion (e.g. Duncan & Thompson 1992) No indications of particularly energetic explosions associated with magnetars (Vink & Kuiper 2006)

The two scenarios are not mutually exclusive

 Fossil field scenario: progenitor star with strong magnetic fields (e.g. Ferrario & Wickramasinghe 2006) There are not enough strongly magnetized progenitors: fossil origin of the magnetic field is not viable (Makarenko et al. 2021)

Origin of magnetars: reverse engineering on their host SNRs

10 (over 30) magnetars are associated with SNRs: the study of the remnant can provide information on the explosion energy (and mechanisms) and on the progenitor

- Canonical explosion energy (Vink & Kuiper 2006)
- Canonical X-ray luminosities and spectra (Esposito et al. 2014)
- Relatively low mass progenitors (Zhou et al. 2019)

> fossil field model

Fossil field scenario? Some caveats

Canonical explosion energy (Vink & Kuiper 2006)

Assuming the Sedov model, where $R \propto E^{0.2}$ (not sensitive to E)

Canonical X-ray luminosities and spectra (Esposito et al. 2014)

Middle-aged SNRs, X-ray emission dominated by shocked ambient medium

Relatively low mass progenitors (Zhou et al. 2019)

Derived from the chemical composition (no significant ejecta emission)

The dynamo scenario cannot be excluded

Imprint in the ejecta

Full 3D simulations of magnetorotational supernovae (also including v-heating) show highly anisotropic explosions and the formation of a proto-magnetar with highly enhanced B (>10¹⁴ G)

Strong anisotropies in the inner ejecta are expected

 $Y_{\rm e}$ $s [k_{\rm B}/{\rm baryon}]$ 14000 km 14000 km 0.48 0.43 0.38 52000 km specific 14000 km energy flux [c] 14000 km 0.05 52000 k

Reichert et al. 2022

Obergaulinger & Aloy 2021

Kes 73 and its magnetar 1E 1841–045

Chandra map (linear color-scale)

Chandra map (logarithmic color-scale)

Kes 73

Middle-aged SNR (Borkowski & Reynolds 2017, Zhou et al. 2019)

- Sedov age ~ 2000 yr
- Distance ~ 8.5 kpc
- X-ray emitting mass ~ 50 \pm 20 M $_{\odot}$ (emission dominated by the ISM/CSM)
- Likely interacting with a molecular cloud at East (Liu et al. 2017)

Kes 73: the XMM-Newton view

XMM (1.7-2 keV)

XMM (6.3-6.8 keV)

Kes 73: the XMM-Newton view

XMM (6.3-6.8 keV)

radio (20 cm)

An Fe-rich feature?

Chandra (broadband) XMM (Fe line)

Spectral analysis

- Spatially resolved spectral analysis with EPIC-pn
- Approx. same number of counts (>12000 in the 0.5-8 keV band) in all regions
- One optically thin isothermal component in non-equilibrium of ionization (as in Zhou et al. 2019)

Spectral analysis – "normal" regions

- $kT = 1.1 \pm 0.1 \text{ keV}$ • $\tau = 6.7 \pm 1.1 \times 10^{10} \text{ s cm}^{-3}$
- $Ne = 1.6 \pm 0.6$
- $Mg = 1.2 \pm 0.4$
- $Si = 1.1 \pm 0.3$
- $Fe = 0.5 \pm 0.2$

reg 1 0.1 ,> ⇒ counts 0.01 normalized 10^{-3} 10^{-4} (data—model)/erroi 2 0 -2-4 5 2 1 Energy (keV)

All parameters in agreement with the Chandra analysis by Zhou et al. 2019

Spectral analysis – Fe regions

Same model as region 1: clear residuals at Fe lines!

Spectral analysis – Fe regions

An additional Fe-rich component is necessary to explain the Fe lines

Spectral analysis – Fe regions

An additional Fe-rich component is necessary to explain the Fe lines

Spatially resolved spectral analysis

Spatially resolved spectral analysis

Spatially resolved spectral analysis

An Fe-rich collimated structure

Physical properties of the southeastern feature

Reichert et al. 2023

- Pure-Fe plasma
- Localized in two ellipsoidal knots
- Density derived from the best-fit value of EM
- Velocity = distance/age

- $n_{Fe} pprox 1 \text{ cm}^{-3}$
- $M_{Fe} \approx 0.3 M_{\odot}$
- $K_{Fe} \approx 10^{49} \text{ erg}$

3-D simulations of magnetorotational SNe show collimated Fe-rich jets, with the Fe mass ranging between 0.1-1 M $_{\odot}$ (Reichert et al. 2023). Do these structures survive in the SNR?

Conclusions

- We detected a collimated Fe-rich structure in Kes 73
- The structure can be associated with pure-ejecta
- The collimated Fe-rich ejecta show a high mass and kinetic energies
- The results <u>support a magnetorotational origin for</u> <u>the magnetar in Kes 73</u>
- Detailed comparison with MHD simulations is in progress

