

9-15 June 2024, Chania, Crete, Greece

On the interaction of supernova remnants with their circumstellar medium review talk

Alexandros Chiotellis

National Observatory of Athens

The physics of Supernova Remnants

Students Handbook

SNRs result by the interaction of the supersonically moving ejecta with their ambient medium

Structure:

- Forward shock (or blast wave)
- Reverse shock
- Contact discontinuity

Evolution:

- Free expansion phase (m= 1)
- Sedov-Taylor phase (m = 0.4)
- Snowplow-phase (m=0.3)
- Momentum driven phase (m=0.25)
- Merge with the ambient medium

Circumstellar structures

Mass loss is a key phenomenon of SN progenitor stars

Progenitors: SN Type:

RSGs/YSGs → II P&L / IIb

- BSGs → II-pec
- He stars \rightarrow Ib
- WR Stars \rightarrow IC
- LBVs

Sive: Observation, Xrays, Radio) Iflash ionization, Arrays, Radio

(Smith 2014) SNe: observational evidence

Core Collapse Supernovae

All of there progenitors are characterized by substantial mass outflows

SN 1987A: Type II-pec (BSG) \rightarrow collision with a CSM shell

Core Collapse Supernovae

\succ Multiple phases of mass loss \rightarrow Complex CSM

See also: Garcia-Segura et al. (1996a), Freyer et al. (2006), Dwarkadas (2005), Toalá & Arthur (2011)

Type la Supernovae

20

N103B

30 397

G337.2-0.7

Energy (eV)

G292.0+1.8

0519-69.0

G344.7-0.1

C1.9+0.3

6500

21 22

Fe K luminosity:

Galactic CC SNRs

LMC CC SNRs

0509-67.5 Kepler

Tycho

RCW86

6400

G352.7-0.1

000

8

9

s⁻¹)

photons

L_K (10⁴⁰ |

All evidence indicate...

PDDe+HP3

PDDe+L2

10¹¹

Dynamics/ X-ray spectra:

SN1885

Keple

Tycho

N103B

10⁹

10.

Badenes et al. 2007

R_{FS} [cm]

10¹⁹

0509-67.5

0519-69.0

Morphology:

Yamaguchi + 2014

PDDe+L2 Fe PDDe+HP3 10¹¹ PDDe 10¹⁰ <t> [cm⁻³ s] 10⁹ 10⁸ 10^{7} Tycho 0509-67.5 0519-69.0 N103B 10¹⁰ 10¹¹ 10^s t [c]

10¹⁰

t [s]

... evolution to a rather homogeneous ambient medium Makes sense...

Low mass progenitor stars (M < 8 Msun)</p>

 \rightarrow No essential mass outflows are expected

Type la Supernovae

" A peculiar SNR is a well-observed SNR "

P. Podsiadlowsky

> Almost <u>none</u> of well observed SNRs Ia can be explained by considering a SNR + homogeneous ambient medium scenario

Characteristic examples:

Kepler's SNR interaction with a dense CSM

(e.g. Chiotellis + 2012, Patnaude + 2012, Kasuga + 2021)

G1.9 + 0.3 interaction with a dense circumstellar shell

(e.g. Borkowski et al. 2014, 2017; Villagran 2024)

And... many others:

Y.H. Chu talk

✓ Tycho
 ✓ DEM L 71
 ✓ N103B
 ✓ 190-69.0

RCW 86 Evolution in a low density cavity excavated by the progenitor

(e.g. Vink + 1997; Williams +2011; Broersen + 2014)

Type la Supernovae

"Alternative" Scenario:

The existence of CSM favors for the single degenerate scenario

Chapter II

The effects of stellar winds on Supernova Remnants

Stellar winds Aass losses in the form a continuum outflow

Density profile (mass conservation law):

Wind bubble evolution: Weaver et al. (1977); Koo & McKee (1992)

Stellar wind's CSM (overall density)

- Final result depends on the wind properties:
- Slow, intense winds (M ↑, u ↓):
 → Dense, small bubbles → (AGB, RSG, LBV)
 Fast, tenuous winds(M ↓, u ↑):
 → Extended cavities → (OB MS, WR, WDs)

Evolution of a SNR within the wind bubble: I. Dynamics

> Evolution within the $\rho(r) \propto r^{-2}$ wind profile

Self-similar solution (Chevalier 1982):

• ISM: s= 0

• Wind bubble: s= 2

Ejecta Density: $\rho_{\rm sn} \propto r^{-n}$

Density of ambient medium: $\rho_{\rm am} \propto r^{-s}$

Then contact discontinuity evolves as:

 $R_{CD} \propto t^{(n-3)/(n-s)}$

 $R_{CD} \propto t^m$ expansion parameter: $m_{bubble} > m_{ism}$

e.g. for Type I SNe (n=7):

Bubble m= 0.8 ; ISM m= 0.57

Collision of SNR with the outer walls of the CSM

Effect I: A substantial deceleration of the forward shock

The velocity decreases and the shocked density increases
Tdyn > Tcool (possible) -> The shock becomes radiative

Disentangling the evolutionary paths of

Supernova Remnants

e.g. Kepler's SNR

Collision of SNR with the outer walls of the CSM

Effect I: A substantial deceleration of the forward shock

The velocity decreases and the shocked density increases Tdyn > Tcool (possible) -> The shock becomes radiative

e.g. Kepler's SNR

Effect II: Formation of a reflected shock

Reflected shock Velocity: Sgro (1975):

$$V_r = \frac{1}{4} \left[3 - \left(\frac{15A_r}{4 - A_r} \right)^{\frac{1}{2}} \right] V_s,$$

Ar: related to the wall to cavity density contrast

• For high contrast \rightarrow Vr \approx few x 10³ km/s

The role of reflected shocks in MMSNRS **MMSNRS:** G 346.6-0.2 W28 Peculiar SNRs (Rho & Petre 1998; Jones et al. 1998): Shell type in Radio (synchrotron) X-ray bright in their center (thermal) \rightarrow No active pulsar (as in Plerions or Composite SNRs) Auchettl al. 2017 per et/al.2000 Forward shock **Standard SNR** Reverse shoc **Evolution** Hot interior Cold. low Sedov-Taylor phase **Radiative phase** Ejecta dominated phase

-0.1

0.01

-1.0e-21

-1.8e-22

-1.0e-24

-3.2e-23 -30

-5.6e-24 -40

ℓ (erg/s.cm³)_10

10

0

-20

-40

-30 -20

MS

..............

10

Age [Myr]

 10^{3}

10²

MESA

vesc [km/s]

Chiotellis, Zapartas & Meyer 2024

20

30

40

10

RSG

-10

0

R (1e18 cm)

bubble

Linking the CSM of RSGs with MMSNRS

M_∗= 15 M_☉

n_{ism} = 100 cm⁻³

Reflected shock \rightarrow only solution?

Require:

Thermal conduction

Physical process No \vec{B} , no mixing

(Cox + 1999; Shelton+ 1999; Velazquez+2004; Zhong + 2019)

Evaporation of shock-engulfed cloudlets

ISM C> 10

(White and Lond 1991; Slavin +2017, Zhang +2019)

Chapter III Deviations from spherical symmetry

Nature would have been strange if everything were spherical...

... same applies for Stellar winds & Supernova Remnants

Non-spherical symmetric stellar winds

> Stellar duplicity

> Stellar rotation

> Stellar systemic motion

> Stellar magnetic fields

I. Bow shocks

Chiotellis + '12 log n (cm³) 4 0.1 -0.3 2 -0.7 -1.1 -1.5 -1.9 -23 -2 -27 -3.1 -4 -6 R (pc)

Ram pressure balance:

Meyer + '15

PSN1040

PSN1070

<u>Runways (progenitor) stars:</u>

Stagnation point:

 ✓ Dynamical interactions of single/binary stars (Poveda+ 1967; Spitzer & Varshalovich 1980; Gvaramadze & Gualandris 2011)

 Supernova explosion in binary systems (Zwicky 1957; Blaauw 1961)

$$r_{0} = 1.48 \left(\frac{\dot{M}}{5 \times 10^{-6} M_{\odot} \text{ yr}^{-1}} \right)^{1/2} \left(\frac{v_{w}}{15 \text{ km s}^{-1}} \right)^{1/2} \\ \times \left(\frac{v_{*}}{280 \text{ km s}^{-1}} \right)^{-1} \left(\frac{n_{0}}{0.001 \text{ cm}^{-3}} \right)^{-1/2} \text{ pc}$$

Borkowski + 1992; Houpis & Mendis (1980); Rozyczka +1993

Bow shocks on SNRs

First idea by: R. Bandiera 1987

Bow shocks on SNRs

Kepler's SNR (Reynolds+ 2007)

First idea by: R. Bandiera 1987

II. Bipolar circumstellar structures

Possible Mechanisms:

Stellar rotation
 (e.g. Bjorkman & Cassinelli 1993; Heger + 2000)

Close binary interactions
 (e.g. Mastrodemos & Morris 1999; Politano & Taam 2011)

Eruptive mass loss (e.g. Smith & Arnett 2014)

Magnetic fields
 (e.g. Garcıa- Segura et al. 1999; Townsend & Owocki 2005)

Most frequent met:

- LBVs (e.g. η Carinae; Smith 2002)
- Blue supergiants (e.g. SBW1, SBW2; Smith + 2007)
- Supernovae: Type II and Type IIn (e.g. SN 2010jl Katsuda et al. 2016)
- Low mas regime (SNe la):
 - PNe (e.g. Mz 3, Clyne et al. 2015)
 - AGB (Decin et al. 2020)

Bipolar CSM

180°

Conclusions

- SNR properties deviate from the SN+ISM interaction model
 -> Reason: CSM
- SN progenitors shape the ambient medium properties through mass outflows
 - CC SNR -> Substantially
 - Type Ia SNR -> not much, but still...
- Wind bubbles alter the evolution of the SNR
- Important effect reflected shocks -> MMSNRs (?)

- Wind bubbles deviate from spherical symmetry
- Bow shock \rightarrow Runaways progenitors
- Ears → Bipolar CSM (or jets)
- Endless debate:
 ISM Vs CSM Vs explosion

Main Conclusion

Talking about violent stellar deaths is a very interesting and intriguing topic

...but it's the opposite when we talk about violent human deaths

