

POSTERS BOOK

Scientific Organizing Committee:

- P. Boumis (Greece, co-chair)
- P. Slane (USA, co-chair)
- T. Janka (Germany)
- B-C. Koo (S. Korea)
- M. Lemoine-Goumand (France)
- R. Margutti (USA)
- S. Orlando (Italy)
- J. Raymond (USA)
- S. Safi-Harb (Canada)
- T. Temim (USA)
- H. Yamaguchi (Japan)
- P. Zhou (China)

Local Organizing Committee:

- P. Boumis (Greece, co-chair)
- S. Akras (Greece, co-chair)
- D. Abartzi (Greece)
- A. Bonanos (Greece)
- A. Chiotellis (Greece)
- E. Christodoulou (Greece)
- S. Derlopa (Greece)
- M. Zapartas (Greece)
- M. Kalitsounaki (Greece)
- M. Kopsacheili (Spain)
- A. Koutromanou (Greece)
- I. Leonidaki (Greece)
- G. Munoz-Sanchez (Greece)
- D. Souropanis (Greece)
- K. Tsakanika (Greece)

Venue: Minoa Palace Resort & Spa (Imperial Main Hall)

A conference organized by the National Observatory of Athens, Greece

CONFERENCE POSTERS

Session 1: Populations/Surveys and Classifications of SNRs and SNe

S1.1	F. Bocchino	GalRSG: A long-term monitoring campaign of Galactic Red Supergiants and the quest for SN explosions' premonitory signs
S1.2	F. Bocchino	Search for Gamma-ray emission from SNRs in the Large Magellanic Cloud: Preliminary results of a new cluster analysis at energies above 3GeV
S1.3	C. Burger-Scheidlin	Gamma-ray detection of newly discovered Ancora supernova remnant: G288.8–6.3
S1.4	A. Castrillo	Supernova remnant catalog in the PHANGS survey
S1.5	M. Filipovic	Mysterious Odd Radio Circle near the Large Magellanic Cloud - An Intergalactic Supernova Remnant?
S1.6	B. Gamache	Characterization of M51 supernovae remnants with the imaging spectrometer SITELLE
S1.7	D. A. Green	Statistics of Galactic Supernova Remnants
S1.8	A. Ingallinera	Studying SNRs and their environment with high-resolution radio spectral index maps
S1.9	A. Khokhriakova	SNR G321.3-3.9 observed with multi-band radio data and SRG/eROSITA
S1.10	I. Leonidaki	Disentangling the evolutionary paths of Supernova Remnants: observational evidence of (non) multi-wavelength emission
S1.11	I. Leonidaki	A systematic meta-analysis of physical parameters of Galactic SNRs
S1.12	TX. Luo	Investigation of Galactic supernova remnants and their environment in 26.6° <l=<math>30.6^{\circ}, $b \le 1.25^{\circ}$ using radio survey</l=<math>
	S. Mantovanini	Low radio frequency images of the southern Galactic plane for supernova remnant detection
S1.14	M. Michailidis	X-ray counterpart detection and gamma-ray analysis of the SNR G279.0+01.1 with eROSITA and Fermi-LAT
S1.15	K. Ronald	An L-band Panoramic View of Galactic Supernova Remnants with the Australian SKA Pathfinder
S1.16	S. Panjkov	The Core-Collapse Progenitor Mass Distribution of the Large Magellanic Cloud
S1.17	N. O. Pinciroli Vago	DeepGraviLens: a multi-modal architecture for classifying gravitational lensing data
S1.18	Z. Smeaton	Discovery of new, young Galactic SNR (G329.9-0.5)

Session 2: SNe and SNRs with Circumstellar Interactions

S2.1	M. Arias	Probing supernova remnant VRO 42.05.01's progenitor properties with IRAM 30m observations
S2.2	R. Baer-Way	A multi-wavelength autopsy of a young interacting supernova to unveil its progenitor
S2.3	M. Chatzopoulos	Radiative Transfer Modeling of Astrophysical Transients
S2.4	WY. Chen	Powered by Circumstellar Interaction Multidimensional Radiation Hydrodynamics Simulations of Supernova 1987a Shock Breakout

S2.5	WY. Chen	2D Rad-Hydro Shock Breakout Simulations on RSG with CSM
S2.6	A. Chrimes	Clues (and conunumdrums) from the circumstellar media
		around extreme extragalactic transients
S2.7	T. Court	Type Ia Supernova Remnants in Different Circumstellar
		Environments
S2.8	J. Horvat	An XMM-Newton study of several nonradiative filaments in the
		northeastern rim of the Cygnus Loop
S2.9	M. Ichihashi	The thermal relaxation process in collisionless shock of SN1006
S2.10	W. Jacobson-Galan	Final Moments: Observational Properties and Physical Modeling of "Flash Spectroscopy" Supernovae
S2.11	B. Liu	Investigation into SNR-accelerated CRs at the prospect of future MeV gamma-ray detectors
\$2.12	LD. Liu	Light curves of Multiple Ejecta-circumstellar Medium
52.12	L. D. Liu	Interactions
S2.13	E. Makarenko	How do supernova remnants cool? Morphology and optical
02.10	El Planar Office	emission lines
S2.14	M. Matsuura	Infrared emission of supernova remnants in the Small
		Magellanic Cloud
S2.15	A. Mercuri	Spectral Analysis of Chandra data on selected regions of the
		Supernova Remnant Cassiopeia A
S2.16	T. Murase	Molecular Clouds associated with middle-aged gamma-ray
60.45	A NY	Supernova Remnants W41 and G22.7–0.2
S2.17	A. Nagy	How can circumstellar interaction explain the special light
S2.18	S. Orlando	curve features of Type Ib/c supernovae? Constraining the CSM structure and progenitor mass-loss
32.10	5. Oriando	history of SN 2014C through 3D hydrodynamic modeling
S2.19	B. H. Pál	A possible circumstellar interaction of SN2004gq
S2.20	O. Petruk	Density and magnetic field gradients in Tycho SNR
S2.21	G. Prete	Interaction of a Supernova Remnant with background
02.21	diffete	interstellar turbulence
S2.22	L. Sun	Probe charge exchange and resonant scattering in Magellanic
		Cloud supernova remnants with spatially-resolved high-
		resolution X-ray spectroscopic study of oxygen lines
S2.23	I. Sushch	Role of reflected shocks in particle acceleration in supernova
		remnants
S2.24	A. Suzuki	Multi-dimensional simulations of interaction-powered
		supernovae
S2.25	H. Suzuki	Global and Rapid Deceleration of X-Ray Knots and Rims of RCW
C2 26	V Taura	103 Chapted Malagular Clauda in the LMC CND N122D Devealed by
S2.26	K. Tsuge	Shocked Molecular Clouds in the LMC SNR N132D Revealed by ALMA ACA
S2.27	S. Ustamujic	Modeling the mixed-morphology supernova remnant VRO
JL.L/	5. Ostamujic	42.05.01
		INIVOIVI

Session 3: SN/SNR Progenitors, Central Engines, Explosion Models

S3.1	E. Abdikamalov	Exploring supernova gravitational waves with machine
		learning
S3.2	M. Anazawa	Estimation of progenitor of Keplers SNR with precision X-ray
		spectroscopic analysis
S3.3	B. Arbutina	Modeling Binary Systems That Survive Supernova Explosions
		and Give Rise to Gravitational Waves

GO 4	B B	
S3.4	B. Barna	Different, but still same: on the common(?) origin of the peculiar Type Iax SNe
S3.5	E. Batziou	The Long-time Evolution of Accretion-Induced Collapse of
55.5	2. 2 u u 2. u	White Dwarfs to Neutron Stars
S3.6	Z. R. Bodola	Massive Progenitor Parade of Stripped-Envelope Supernovae
S3.7	A. Z. Bonanos	Evidence for episodic mass loss in red supergiants from the
		ASSESS project
S3.8	K. A. Bostroem	Considering the Single and Binary Origins of the Type IIP SN
		2017eaw
S3.9	M. Bugli	Numerical models of magneto-rotational supernovae:
		dynamics, multi-messenger signals, and explosive
C2 10	M Dual:	nucleosynthesis
S3.10	M. Bugli	3D MHD core-collapse supernovae code comparison: the impact of numerics on central engine's simulations
S3.11	E. Christodoulou	Obtaining accurate parameters of Type IIP progenitors in NGC
55.11	L. CIII IStododiou	6822, IC 10 & WLM
S3.12	L. Dang	Typing supernova remnant G352.7–0.1 using XMM-Newton X-
		ray observations
S3.13	B. Dinçel	Possible pre-supernova binary companion to the progenitor of
	•	the supernova remnant IC 443
S3.14	O. Eggenberger	Black Hole Supernovae and their Equation-of-state
	Andersen	Dependence
S3.15	J. I. Gonzalez-	Searching for surviving stellar companions of historical
00.46	Hernandez	galactic type Ia supernovae
S3.16	A. Holas	Electron-capture supernovae - Thermonuclear explosion or
S3.17	C. M. Irwin	gravitational collapse? - The fate of sAGB stars on a knife's edge An unexplored regime of shock breakout: the effect of rapid
33.17	C. M. II WIII	thermalization on the observed spectrum
S3.18	M. Kalitsounaki	Discovery of an extreme Red Supergiant in the LMC
55.15	THE TRAITED OUT ATT	transitioning to a Blue Supergiant
S3.19	E. Kasdagli	Improving Supernova Prescriptions in Binary Population
	<u> </u>	Synthesis Using Detailed Stellar Profiles
S3.20	J. Luo	3D Simulation of SN~Ia SNR: Effects of Companion Star and
		Progenitor System
S3.21	K. Matsunaga	Formation of Mg-rich SNRs by shell merger and its effect on the
		explodability
S3.22	G. Munoz-Sanchez	[W60] B90: a mass-losing luminous RSG in the LMC interacting
S3.23	T. Narita	with the CSM Progenitor constraint with CNO abundances of circumstellar
33.43	I. Nalita	material in supernova remnants
S3.24	Z. Niu	The binary progenitor for Type IIP supernovae
S3.25	C. Omand	Probing Energetic Infant Pulsars with Supernova Emission
		Lines
S3.26	KC. Pan	Stellar Mass Black Hole Formation and Multimessenger Signals
		from Core-collapse Supernova Simulations
S3.27	G. Pignata	Three years observations of the nearby type II SN2008bk
S3.28	A. Rest	The Historic Light Curve of Eta Car's Great Eruption from its
C2 20	D Duie I	Light Echoes
S3.29	P. Ruiz-Lapuente	SN Ia supernova remnant with M dwarf companions
S3.30	R. Sawada	'56Ni problem' in Canonical Supernova Explosion The Life Stary of Stripped Envelope Supernovae as told
S3.31	M. Shahbandeh	The Life Story of Stripped-Envelope Supernovae as told through JWST Observations
S3.32	M. Solar	Binary progenitor systems for Type Ic supernovae
S3.33	T. Tanaka	Expansion Measurements of Tycho's Supernova Remnant and
		Their Implications of the Progenitor System
		= -

S3.34	H. Uchida	Possible	e eviden	ice d	of a je	t-induce	d explosio	n fo	und fro	m X-ray
		and rad	io obsei	rvat	ions c	f a pecu	liar SNR G(0.61	+0.01	
S3.35	J. Weng	Upper	Limits	of	⁴⁴ Ti	Decay	Emission	in	Four	Nearby
		Thermo	nuclear	·Sup	oerno	va Remi	nants			

Session 4: SNR Structure, Ejecta and Evolution

S4.1	M. Agarwal	X-ray diagnostics of Cassiopeia A's "Green Monster": evidence for dense shocked circumstellar plasma
S4.2	S. Akras	Spectroscopic analysis tool for intEgraL fieLd unIt daTacubEs (SATELLITE): The case of SNR 0509-68.7
S4.3	M. Anđelić	On the origin of the North Polar Spur
S4.4	Y. Chen	A Monte-Carlo Simulation on Resonant Scattering of X-ray Line
		Emission in Supernova Remnants
S4.5	YH. Chi	Thermal X-ray Emission in the Western Half of the LMC Superbubble 30 Dor C
S4.6	P. Das	Integral field spectroscopy of type Ia supernova remnants.
S4.7	D. Dickinson	High Resolution Mapping of the Unshocked Ejecta in Cassiopeia A
S4.8	M. Fontaine	Theoretical and Experimental Simulations of Colliding Blast Waves
S4.9	B. Giudici	Hydrodynamic instabilities in three-dimensional simulations of neutrino-driven supernovae of 14 red supergiant progenitors
S4.10	R. Giuffrida	Measuring the initial mass of 44Ti in SN 1987A through the 44Sc emission line
S4.11	L. Godinaud	Mapping the 3D dynamics and spectral properties of Tycho's SNR in X-rays
S4.12	T. Ko	The multi-layer structure of SNR 1181 with a white dwarf in its center
S4.13	BC. Koo	JWST Observations of the Cassiopeia A Supernova Remnant: Near-Infrared Colors of Supernova Ejecta
S4.14	D. Leahy	On emission measures and element densities and masses inferred from XSPEC
S4.15	D. Leahy	Models for supernova remnants with reverse shock emission
S4.16	E. Makarenko	Thermal X-ray emission from supernova remnants in 3D
		(M)HD simulations
S4.17	S. Mandal	Measurement of anisotropies in observed Supernova Remnants and their interpretation using hydrodynamical models
S4.18	M. Ono	Molecular formation in the ejecta of SN 1987A based on three- dimensional hydrodynamical models
S4.19	S. Panjkov	Morphological Insights into the SN progenitors of the Small Magellanic Cloud
S4.20	G. Paylı	Investigation of supernova remnant IC 443 and G189.6+3.3 with LAMOST
S4.21	L. Romano	Cloud Formation by Supernova Implosion
S4.22	V. Sapienza	Probing Shocked Ejecta in SN 1987A: A novel diagnostic
	•	approach using XRISM-Resolve
S4.23	N. Sanches Sartorio	New Analytical Solutions for Supernova Shocks
S4.24	L. Sun	Evolution of X-ray Gas in SN 1987A from 2007 to 2021: Ring Fading and Ejecta Brightening Unveiled through Differential Emission Measure Analysis

S4.25	J. C. Toledo-Roy	Simulated non-thermal emission of the supernova remnant		
		G1.9+0.3		
S4.26	D. Urošević	A method for determination of evolutionary status of		
		supernova remnants from radio data		
S4.27	B. van Baal	Nebular Phase Stripped Envelope Supernovae in 3D		
S4.28	K. Vargas Rojas	Study of non-thermal emission of Kepler's SNR with MHD		
		numerical simulations.		

Session 5: Shock Physics, Particle Acceleration, Polarization in SNRs and $\,$ PWNe $\,$

S5.1	F. Acero	How I learned to stop trusting my X-ray spectral best fits and love nested sampling
S5.2	B. Ball	Radio Polarization Studies of Galactic Supernova Remnants with ASKAP
S5.3	D. Castro	The Expansion and Width of the Synchrotron Filaments Associated with the Forward Shocks of SNRs
S5.4	L. Del Zanna	Relativistic MHD turbulence simulations and synchrotron polarization properties of Pulsar Wind Nebulae
S5.5	R. Ferrazzoli	X-ray polarimetry of RX J1713.7-394
S5.6	R. Giuffrida	Evidence for proton acceleration and escape from the Puppis A SNR using Fermi-LAT observations
S5.7	E. Greco	Jitter radiation as an alternative mechanism for the nonthermal emission in Cassiopeia A
S5.8	J. Hewitt	Resolving the gamma-ray supernova remnant IC 443 with Fermi LAT and VERITAS
S5.9	J. Hewitt	Two new radio-dim, gamma-ray-bright supernova remnants
S5.10	S. Knežević	Shock geometry and physics in the supernova remnant SNR 0509-67.5
S5.11	P. Kostić	Kinetic-based CFD modeling of synchrotron emission spectra at fast SNRs
S5.12	Y. Ohshiro	A self-consistent model of shock-heated plasma in non-equilibrium states for direct parameter constraints from X-ray observations
S5.13	V. Sapienza	Polarization and time evolution of the synchrotron emission in Kepler's SNR
S5.14	X. Shi	The production of unstable cosmic-ray isotopes in supernovae clusters
S5.15	J. D. Slavin	Modeling Shock Emission Including Dust Destruction
S5.16	K. Stasiewicz	Reinterpretation of the Fermi acceleration of cosmic rays in terms of the ballistic surfing acceleration in supernova shocks
S5.17	S. J. Tanaka	A Self-regulated Stochastic Acceleration Model of Pulsar Wind Nebulae
S5.18	D. Tateishi	Suzaku/XIS study of the acceleration environment of bilateral SNR RX J0852.0-4622
S5.19	S. Ustamujic	Modeling the supernova remnant RX J1713.7 – 3946: particle acceleration, gamma-ray emission, and neutrino flux

Session 6: SN/SNR dust, environments, feedback

S6.1	N. Izumi	CI/CO abundance ratio of shock-excited gas in the Magellanic
		Supernova Remnant N63A

S6.2	F. Kirchschlager	Dust destruction in the clumpy remnant Cassiopeia A: impact of inhomogeneous dust distributions
S6.3	N. Sanches Sartorio	e e e e e e e e e e e e e e e e e e e
S6.4	H. Sano	ALMA Observations of Supernova Remnant N49 in the Large Magellanic Cloud. II. Non-LTE Analysis of Shock-heated Molecular Clouds
S6.5	T. Scheffler	Dust destruction by supernova remnant forward shocks in a turbulent interstellar medium
S6.6	A. Singleton	Constraining the progenitor properties of the Type Ib supernova iPTF13bvn through its environment with HST and MUSE
S6.7	D. Souropanis	Time-dependent feedback of core-collapse supernovae from binary progenitors via detailed binary population synthesis models
S6.8	T. Tu	A Yebes W band Line Survey towards an Unshocked Molecular Cloud of Supernova Remnant 3C391: Evidence of Cosmic-Ray- Induced Chemistry
S6.9	R. Wesson	The slow formation of dust by core collapse supernovae
S6.10	M. Zhang	Not gone with the wind: survival of high-velocity molecular clouds in the Galactic Centre
S6.11	Q. Zhang	A molecular line survey toward clumps G and E in supernova remnant IC 443 with the Submillimeter Array
S6.12	Z. Zhang	Estimation of the Dust Mass with Infrared Emission and Extinction of the Supernova Remnants: G156.2+5.7, G109.1-1.0, G166.0+4.3, G93.7-0.2
S6.13	S. Zsíros	Disentangling possible dust components of core-collapse supernovae within a Bayesian framework

Session 7: PWN Diversity; Structures, Bowshocks and Magnetar Wind Nebulae

S7.1	J. Alford	Cosmic Ray Leptons Escaping from CTA 1?
S7.2	Y. Chen	"Mirage" and large offsets in the data as a result of asymmetric
		CR diffusion
S7.3	L. V. da Conceição	Using CFHT's SITELLE to probe the long-sought shell in the
		Crab nebula
S7.4	S. Gagnon	Chandra X-ray Observations of PSR J1849-0001 and its Pulsar
		Wind Nebula
S7.5	X. Li	An Exploration of Misaligned Outflows in Pulsar Wind Nebulae
S7.6	S. Mandal	Diagnosis of Pulsar Wind Nebula dynamics using their
		filamentary structure
S7.7	K. Yan	Pulsar halos as an origin of the Galactic diffuse TeV-PeV
		emission: Insight from LHAASO and IceCube

Session 8: SNRs and PWNe as PeVatrons

S8.1	R. Brose	Fast Blue Optical Transients as cosmic-ray sources
S8.2	R. Diesing	The Maximum Energy of Shock-Accelerated Cosmic Rays
00 D	w.a.u.	
S8.3	Y. Gallant	Pulsar Wind Nebulae and their halos observed in TeV and PeV
		gamma rays
S8.4	S. Lazarevic	Radio-continuum view of PeVatrons

S8.5	Y. Li	Multi-Messenger Modeling of the Monogem Pulsar Halo
S8.6	B. Mac Intyre	The Manatee Nebula W50-SS433: a Galactic PeVatron?
S8.7	I. Sander	Pulsar Wind Nebulae and PeVatrons: A Case Study of PWN G309.92-2.51
S8.8	N. Tsuji	Search for molecular clouds associated with PeVatrons by the Nobeyama 45-m radio telescope: the case of LHAASO J0341+5258
S8.9	J. Woo	Revisiting Cassiopeia A after a decade: the first spatially resolved synchrotron X-ray variability above 15 keV by NuSTAR

Session 9: SNR/PWN/Compact Objects Associations, Interaction and Evolution

S9.1	J. Ahlvind	Late-time X-ray observations Core-Collapse Supernovae - constraints on emission from compact objects and CSM
S9.2	A. M. Moaz	interaction Multi-Wavelength Modelling of the Pulsar Wind Nebulae Kes
S9.3	J. Suherli	75 & HESS J1640-465 A-MUSE-ing Views of the Central Environment of the Vela Jr. and 1E0102-72.3 Supernova Remnants

